Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptelcdmf Structured version   Visualization version   GIF version

Theorem fvmptelcdmf 43047
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fvmptelcdmf.a 𝑥𝐴
fvmptelcdmf.c 𝑥𝐶
fvmptelcdmf.f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdmf ((𝜑𝑥𝐴) → 𝐵𝐶)

Proof of Theorem fvmptelcdmf
StepHypRef Expression
1 fvmptelcdmf.f . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 fvmptelcdmf.a . . . 4 𝑥𝐴
3 fvmptelcdmf.c . . . 4 𝑥𝐶
4 eqid 2737 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptff 43046 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
61, 5sylibr 233 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
76r19.21bi 3231 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wnfc 2885  wral 3062  cmpt 5170  wf 6461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-fun 6467  df-fn 6468  df-f 6469
This theorem is referenced by:  smfdivdmmbl  44614
  Copyright terms: Public domain W3C validator