Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptelcdmf Structured version   Visualization version   GIF version

Theorem fvmptelcdmf 45216
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fvmptelcdmf.a 𝑥𝐴
fvmptelcdmf.c 𝑥𝐶
fvmptelcdmf.f (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdmf ((𝜑𝑥𝐴) → 𝐵𝐶)

Proof of Theorem fvmptelcdmf
StepHypRef Expression
1 fvmptelcdmf.f . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 fvmptelcdmf.a . . . 4 𝑥𝐴
3 fvmptelcdmf.c . . . 4 𝑥𝐶
4 eqid 2735 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptff 45215 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
61, 5sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
76r19.21bi 3249 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wnfc 2888  wral 3059  cmpt 5231  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  smfdivdmmbl  46794
  Copyright terms: Public domain W3C validator