MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvimaeqv Structured version   Visualization version   GIF version

Theorem fncnvimaeqv 18083
Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
fncnvimaeqv (𝐹 Fn V → (𝐹 “ V) = V)

Proof of Theorem fncnvimaeqv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncnvima2 7056 . 2 (𝐹 Fn V → (𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V})
2 fveq2 6885 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
32eleq1d 2812 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ V ↔ (𝐹𝑥) ∈ V))
43elrab 3678 . . . 4 (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V))
5 fvexd 6900 . . . . 5 (𝐹 Fn V → (𝐹𝑥) ∈ V)
65biantrud 531 . . . 4 (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V)))
74, 6bitr4id 290 . . 3 (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ 𝑥 ∈ V))
87eqrdv 2724 . 2 (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} = V)
91, 8eqtrd 2766 1 (𝐹 Fn V → (𝐹 “ V) = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  ccnv 5668  cima 5672   Fn wfn 6532  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-fv 6545
This theorem is referenced by:  bascnvimaeqv  18084
  Copyright terms: Public domain W3C validator