| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fncnvimaeqv | Structured version Visualization version GIF version | ||
| Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.) |
| Ref | Expression |
|---|---|
| fncnvimaeqv | ⊢ (𝐹 Fn V → (◡𝐹 “ V) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncnvima2 6994 | . 2 ⊢ (𝐹 Fn V → (◡𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V}) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 3 | 2 | eleq1d 2816 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ∈ V ↔ (𝐹‘𝑥) ∈ V)) |
| 4 | 3 | elrab 3642 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹‘𝑥) ∈ V)) |
| 5 | fvexd 6837 | . . . . 5 ⊢ (𝐹 Fn V → (𝐹‘𝑥) ∈ V) | |
| 6 | 5 | biantrud 531 | . . . 4 ⊢ (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹‘𝑥) ∈ V))) |
| 7 | 4, 6 | bitr4id 290 | . . 3 ⊢ (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} ↔ 𝑥 ∈ V)) |
| 8 | 7 | eqrdv 2729 | . 2 ⊢ (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} = V) |
| 9 | 1, 8 | eqtrd 2766 | 1 ⊢ (𝐹 Fn V → (◡𝐹 “ V) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: bascnvimaeqv 18027 |
| Copyright terms: Public domain | W3C validator |