Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fncnvimaeqv | Structured version Visualization version GIF version |
Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.) |
Ref | Expression |
---|---|
fncnvimaeqv | ⊢ (𝐹 Fn V → (◡𝐹 “ V) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 6975 | . 2 ⊢ (𝐹 Fn V → (◡𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V}) | |
2 | fveq2 6809 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
3 | 2 | eleq1d 2822 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) ∈ V ↔ (𝐹‘𝑥) ∈ V)) |
4 | 3 | elrab 3633 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹‘𝑥) ∈ V)) |
5 | fvexd 6824 | . . . . 5 ⊢ (𝐹 Fn V → (𝐹‘𝑥) ∈ V) | |
6 | 5 | biantrud 532 | . . . 4 ⊢ (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹‘𝑥) ∈ V))) |
7 | 4, 6 | bitr4id 289 | . . 3 ⊢ (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} ↔ 𝑥 ∈ V)) |
8 | 7 | eqrdv 2735 | . 2 ⊢ (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹‘𝑦) ∈ V} = V) |
9 | 1, 8 | eqtrd 2777 | 1 ⊢ (𝐹 Fn V → (◡𝐹 “ V) = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 Vcvv 3441 ◡ccnv 5604 “ cima 5608 Fn wfn 6458 ‘cfv 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-fv 6471 |
This theorem is referenced by: bascnvimaeqv 17904 |
Copyright terms: Public domain | W3C validator |