MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvimaeqv Structured version   Visualization version   GIF version

Theorem fncnvimaeqv 18137
Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
fncnvimaeqv (𝐹 Fn V → (𝐹 “ V) = V)

Proof of Theorem fncnvimaeqv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncnvima2 7056 . 2 (𝐹 Fn V → (𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V})
2 fveq2 6881 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
32eleq1d 2820 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ V ↔ (𝐹𝑥) ∈ V))
43elrab 3676 . . . 4 (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V))
5 fvexd 6896 . . . . 5 (𝐹 Fn V → (𝐹𝑥) ∈ V)
65biantrud 531 . . . 4 (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V)))
74, 6bitr4id 290 . . 3 (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ 𝑥 ∈ V))
87eqrdv 2734 . 2 (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} = V)
91, 8eqtrd 2771 1 (𝐹 Fn V → (𝐹 “ V) = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  ccnv 5658  cima 5662   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  bascnvimaeqv  18138
  Copyright terms: Public domain W3C validator