MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvimaeqv Structured version   Visualization version   GIF version

Theorem fncnvimaeqv 17836
Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
fncnvimaeqv (𝐹 Fn V → (𝐹 “ V) = V)

Proof of Theorem fncnvimaeqv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncnvima2 6938 . 2 (𝐹 Fn V → (𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V})
2 fveq2 6774 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
32eleq1d 2823 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ V ↔ (𝐹𝑥) ∈ V))
43elrab 3624 . . . 4 (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V))
5 fvexd 6789 . . . . 5 (𝐹 Fn V → (𝐹𝑥) ∈ V)
65biantrud 532 . . . 4 (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V)))
74, 6bitr4id 290 . . 3 (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ 𝑥 ∈ V))
87eqrdv 2736 . 2 (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} = V)
91, 8eqtrd 2778 1 (𝐹 Fn V → (𝐹 “ V) = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  ccnv 5588  cima 5592   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  bascnvimaeqv  17837
  Copyright terms: Public domain W3C validator