![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fncnvima2 | Structured version Visualization version GIF version |
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fncnvima2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 6479 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵))) | |
2 | 1 | abbi2dv 2891 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)}) |
3 | df-rab 3070 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)} | |
4 | 2, 3 | syl6eqr 2823 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {cab 2757 {crab 3065 ◡ccnv 5248 “ cima 5252 Fn wfn 6024 ‘cfv 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5992 df-fun 6031 df-fn 6032 df-fv 6037 |
This theorem is referenced by: fniniseg2 6482 fncnvimaeqv 16963 r0cld 21758 iunpreima 29717 xppreima 29785 xpinpreima 30288 xpinpreima2 30289 orvcval2 30856 preimaiocmnf 40303 preimaicomnf 41439 smfresal 41512 |
Copyright terms: Public domain | W3C validator |