Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fncnvima2 | Structured version Visualization version GIF version |
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fncnvima2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 6930 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵))) | |
2 | 1 | abbi2dv 2879 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)}) |
3 | df-rab 3075 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)} | |
4 | 2, 3 | eqtr4di 2798 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cab 2717 {crab 3070 ◡ccnv 5588 “ cima 5592 Fn wfn 6426 ‘cfv 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-fv 6439 |
This theorem is referenced by: fniniseg2 6934 fncnvimaeqv 17832 r0cld 22885 iunpreima 30898 xppreima 30977 xpinpreima 31850 xpinpreima2 31851 orvcval2 32419 preimaiocmnf 43068 preimaicomnf 44215 smfresal 44288 |
Copyright terms: Public domain | W3C validator |