MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvima2 Structured version   Visualization version   GIF version

Theorem fncnvima2 7036
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncnvima2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fncnvima2
StepHypRef Expression
1 elpreima 7033 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)))
21eqabdv 2862 . 2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)})
3 df-rab 3409 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)}
42, 3eqtr4di 2783 1 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408  ccnv 5640  cima 5644   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  fniniseg2  7037  fncnvimaeqv  18088  rngqiprngimf1  21217  r0cld  23632  iunpreima  32500  xppreima  32576  xpinpreima  33903  xpinpreima2  33904  orvcval2  34457  preimaiocmnf  45565  preimaicomnf  46716  smfresal  46793
  Copyright terms: Public domain W3C validator