MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvima2 Structured version   Visualization version   GIF version

Theorem fncnvima2 7074
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncnvima2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fncnvima2
StepHypRef Expression
1 elpreima 7071 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)))
21eqabdv 2860 . 2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)})
3 df-rab 3420 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)}
42, 3eqtr4di 2784 1 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {cab 2703  {crab 3419  ccnv 5681  cima 5685   Fn wfn 6549  cfv 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-fv 6562
This theorem is referenced by:  fniniseg2  7075  fncnvimaeqv  18143  rngqiprngimf1  21289  r0cld  23733  iunpreima  32485  xppreima  32563  xpinpreima  33721  xpinpreima2  33722  orvcval2  34292  preimaiocmnf  45179  preimaicomnf  46332  smfresal  46409
  Copyright terms: Public domain W3C validator