| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fncnvima2 | Structured version Visualization version GIF version | ||
| Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncnvima2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 6996 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵))) | |
| 2 | 1 | eqabdv 2861 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)}) |
| 3 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐵)} | |
| 4 | 2, 3 | eqtr4di 2782 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ 𝐵) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 ◡ccnv 5622 “ cima 5626 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fniniseg2 7000 fncnvimaeqv 18045 rngqiprngimf1 21226 r0cld 23642 iunpreima 32527 xppreima 32607 xpinpreima 33892 xpinpreima2 33893 orvcval2 34446 preimaiocmnf 45561 preimaicomnf 46712 smfresal 46789 |
| Copyright terms: Public domain | W3C validator |