MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvima2 Structured version   Visualization version   GIF version

Theorem fncnvima2 7052
Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncnvima2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fncnvima2
StepHypRef Expression
1 elpreima 7049 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)))
21eqabdv 2859 . 2 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)})
3 df-rab 3425 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) ∈ 𝐵)}
42, 3eqtr4di 2782 1 (𝐹 Fn 𝐴 → (𝐹𝐵) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  {crab 3424  ccnv 5665  cima 5669   Fn wfn 6528  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541
This theorem is referenced by:  fniniseg2  7053  fncnvimaeqv  18072  rngqiprngimf1  21142  r0cld  23563  iunpreima  32231  xppreima  32306  xpinpreima  33341  xpinpreima2  33342  orvcval2  33912  preimaiocmnf  44725  preimaicomnf  45878  smfresal  45955
  Copyright terms: Public domain W3C validator