Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   GIF version

Theorem fourierdlem3 46095
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 7361 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7369 . . . . 5 (𝑚 = 𝑀 → ((-π[,]π) ↑m (0...𝑚)) = ((-π[,]π) ↑m (0...𝑀)))
3 fveqeq2 6835 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = π ↔ (𝑝𝑀) = π))
43anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ↔ ((𝑝‘0) = -π ∧ (𝑝𝑀) = π)))
5 oveq2 7361 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3290 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 632 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3415 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem3.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7386 . . . . 5 ((-π[,]π) ↑m (0...𝑀)) ∈ V
1110rabex 5281 . . . 4 {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 6934 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2814 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6825 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2731 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = -π ↔ (𝑄‘0) = -π))
16 fveq1 6825 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2731 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = π ↔ (𝑄𝑀) = π))
1815, 17anbi12d 632 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ↔ ((𝑄‘0) = -π ∧ (𝑄𝑀) = π)))
19 fveq1 6825 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6825 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5108 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3152 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 632 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3650 . 2 (𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  m cmap 8760  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  -cneg 11366  cn 12146  [,]cicc 13269  ...cfz 13428  ..^cfzo 13575  πcpi 15991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator