Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   GIF version

Theorem fourierdlem3 43651
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 7283 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7291 . . . . 5 (𝑚 = 𝑀 → ((-π[,]π) ↑m (0...𝑚)) = ((-π[,]π) ↑m (0...𝑀)))
3 fveqeq2 6783 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = π ↔ (𝑝𝑀) = π))
43anbi2d 629 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ↔ ((𝑝‘0) = -π ∧ (𝑝𝑀) = π)))
5 oveq2 7283 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3348 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 631 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3420 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem3.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7308 . . . . 5 ((-π[,]π) ↑m (0...𝑀)) ∈ V
1110rabex 5256 . . . 4 {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 6875 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2824 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6773 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2740 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = -π ↔ (𝑄‘0) = -π))
16 fveq1 6773 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2740 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = π ↔ (𝑄𝑀) = π))
1815, 17anbi12d 631 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ↔ ((𝑄‘0) = -π ∧ (𝑄𝑀) = π)))
19 fveq1 6773 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6773 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5087 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3112 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 631 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3624 . 2 (𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  -cneg 11206  cn 11973  [,]cicc 13082  ...cfz 13239  ..^cfzo 13382  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator