Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   GIF version

Theorem fourierdlem3 46031
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 7456 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7464 . . . . 5 (𝑚 = 𝑀 → ((-π[,]π) ↑m (0...𝑚)) = ((-π[,]π) ↑m (0...𝑀)))
3 fveqeq2 6929 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = π ↔ (𝑝𝑀) = π))
43anbi2d 629 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ↔ ((𝑝‘0) = -π ∧ (𝑝𝑀) = π)))
5 oveq2 7456 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3334 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 631 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3462 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem3.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7481 . . . . 5 ((-π[,]π) ↑m (0...𝑀)) ∈ V
1110rabex 5357 . . . 4 {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 7029 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2830 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2742 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = -π ↔ (𝑄‘0) = -π))
16 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2742 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = π ↔ (𝑄𝑀) = π))
1815, 17anbi12d 631 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ↔ ((𝑄‘0) = -π ∧ (𝑄𝑀) = π)))
19 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5179 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3184 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 631 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3708 . 2 (𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  -cneg 11521  cn 12293  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator