Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   GIF version

Theorem fourierdlem3 44826
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 7417 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7425 . . . . 5 (𝑚 = 𝑀 → ((-π[,]π) ↑m (0...𝑚)) = ((-π[,]π) ↑m (0...𝑀)))
3 fveqeq2 6901 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = π ↔ (𝑝𝑀) = π))
43anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ↔ ((𝑝‘0) = -π ∧ (𝑝𝑀) = π)))
5 oveq2 7417 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3326 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 632 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3450 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem3.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7442 . . . . 5 ((-π[,]π) ↑m (0...𝑀)) ∈ V
1110rabex 5333 . . . 4 {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 6999 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2820 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6891 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2735 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = -π ↔ (𝑄‘0) = -π))
16 fveq1 6891 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2735 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = π ↔ (𝑄𝑀) = π))
1815, 17anbi12d 632 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ↔ ((𝑄‘0) = -π ∧ (𝑄𝑀) = π)))
19 fveq1 6891 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6891 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5162 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3178 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 632 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3684 . 2 (𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  m cmap 8820  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  -cneg 11445  cn 12212  [,]cicc 13327  ...cfz 13484  ..^cfzo 13627  πcpi 16010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator