Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem2 Structured version   Visualization version   GIF version

Theorem fourierdlem2 46030
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem2.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem2
StepHypRef Expression
1 oveq2 7456 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7464 . . . . 5 (𝑚 = 𝑀 → (ℝ ↑m (0...𝑚)) = (ℝ ↑m (0...𝑀)))
3 fveqeq2 6929 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = 𝐵 ↔ (𝑝𝑀) = 𝐵))
43anbi2d 629 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵)))
5 oveq2 7456 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3334 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 631 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3462 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem2.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7481 . . . . 5 (ℝ ↑m (0...𝑀)) ∈ V
1110rabex 5357 . . . 4 {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 7029 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2830 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2742 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴))
16 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2742 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = 𝐵 ↔ (𝑄𝑀) = 𝐵))
1815, 17anbi12d 631 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵)))
19 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6919 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5179 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3184 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 631 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3708 . 2 (𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cn 12293  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  fourierdlem11  46039  fourierdlem12  46040  fourierdlem13  46041  fourierdlem14  46042  fourierdlem15  46043  fourierdlem34  46062  fourierdlem37  46065  fourierdlem41  46069  fourierdlem48  46075  fourierdlem49  46076  fourierdlem50  46077  fourierdlem54  46081  fourierdlem63  46090  fourierdlem64  46091  fourierdlem65  46092  fourierdlem69  46096  fourierdlem70  46097  fourierdlem72  46099  fourierdlem74  46101  fourierdlem75  46102  fourierdlem76  46103  fourierdlem79  46106  fourierdlem81  46108  fourierdlem85  46112  fourierdlem88  46115  fourierdlem89  46116  fourierdlem90  46117  fourierdlem91  46118  fourierdlem92  46119  fourierdlem93  46120  fourierdlem94  46121  fourierdlem97  46124  fourierdlem102  46129  fourierdlem103  46130  fourierdlem104  46131  fourierdlem111  46138  fourierdlem113  46140  fourierdlem114  46141
  Copyright terms: Public domain W3C validator