![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem2 | Structured version Visualization version GIF version |
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem2.1 | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
Ref | Expression |
---|---|
fourierdlem2 | ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
2 | 1 | oveq2d 7425 | . . . . 5 ⊢ (𝑚 = 𝑀 → (ℝ ↑m (0...𝑚)) = (ℝ ↑m (0...𝑀))) |
3 | fveqeq2 6901 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑚) = 𝐵 ↔ (𝑝‘𝑀) = 𝐵)) | |
4 | 3 | anbi2d 630 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵))) |
5 | oveq2 7417 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
6 | 5 | raleqdv 3326 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
7 | 4, 6 | anbi12d 632 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))))) |
8 | 2, 7 | rabeqbidv 3450 | . . . 4 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
9 | fourierdlem2.1 | . . . 4 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
10 | ovex 7442 | . . . . 5 ⊢ (ℝ ↑m (0...𝑀)) ∈ V | |
11 | 10 | rabex 5333 | . . . 4 ⊢ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V |
12 | 8, 9, 11 | fvmpt 6999 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃‘𝑀) = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
13 | 12 | eleq2d 2820 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})) |
14 | fveq1 6891 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0)) | |
15 | 14 | eqeq1d 2735 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴)) |
16 | fveq1 6891 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘𝑀) = (𝑄‘𝑀)) | |
17 | 16 | eqeq1d 2735 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘𝑀) = 𝐵 ↔ (𝑄‘𝑀) = 𝐵)) |
18 | 15, 17 | anbi12d 632 | . . . 4 ⊢ (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵))) |
19 | fveq1 6891 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘𝑖) = (𝑄‘𝑖)) | |
20 | fveq1 6891 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))) | |
21 | 19, 20 | breq12d 5162 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
22 | 21 | ralbidv 3178 | . . . 4 ⊢ (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
23 | 18, 22 | anbi12d 632 | . . 3 ⊢ (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
24 | 23 | elrab 3684 | . 2 ⊢ (𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
25 | 13, 24 | bitrdi 287 | 1 ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 ↑m cmap 8820 ℝcr 11109 0cc0 11110 1c1 11111 + caddc 11113 < clt 11248 ℕcn 12212 ...cfz 13484 ..^cfzo 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 |
This theorem is referenced by: fourierdlem11 44834 fourierdlem12 44835 fourierdlem13 44836 fourierdlem14 44837 fourierdlem15 44838 fourierdlem34 44857 fourierdlem37 44860 fourierdlem41 44864 fourierdlem48 44870 fourierdlem49 44871 fourierdlem50 44872 fourierdlem54 44876 fourierdlem63 44885 fourierdlem64 44886 fourierdlem65 44887 fourierdlem69 44891 fourierdlem70 44892 fourierdlem72 44894 fourierdlem74 44896 fourierdlem75 44897 fourierdlem76 44898 fourierdlem79 44901 fourierdlem81 44903 fourierdlem85 44907 fourierdlem88 44910 fourierdlem89 44911 fourierdlem90 44912 fourierdlem91 44913 fourierdlem92 44914 fourierdlem93 44915 fourierdlem94 44916 fourierdlem97 44919 fourierdlem102 44924 fourierdlem103 44925 fourierdlem104 44926 fourierdlem111 44933 fourierdlem113 44935 fourierdlem114 44936 |
Copyright terms: Public domain | W3C validator |