![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem2 | Structured version Visualization version GIF version |
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem2.1 | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
Ref | Expression |
---|---|
fourierdlem2 | ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7419 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
2 | 1 | oveq2d 7427 | . . . . 5 ⊢ (𝑚 = 𝑀 → (ℝ ↑m (0...𝑚)) = (ℝ ↑m (0...𝑀))) |
3 | fveqeq2 6900 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑚) = 𝐵 ↔ (𝑝‘𝑀) = 𝐵)) | |
4 | 3 | anbi2d 629 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵))) |
5 | oveq2 7419 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
6 | 5 | raleqdv 3325 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
7 | 4, 6 | anbi12d 631 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))))) |
8 | 2, 7 | rabeqbidv 3449 | . . . 4 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
9 | fourierdlem2.1 | . . . 4 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
10 | ovex 7444 | . . . . 5 ⊢ (ℝ ↑m (0...𝑀)) ∈ V | |
11 | 10 | rabex 5332 | . . . 4 ⊢ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V |
12 | 8, 9, 11 | fvmpt 6998 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃‘𝑀) = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
13 | 12 | eleq2d 2819 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})) |
14 | fveq1 6890 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0)) | |
15 | 14 | eqeq1d 2734 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴)) |
16 | fveq1 6890 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘𝑀) = (𝑄‘𝑀)) | |
17 | 16 | eqeq1d 2734 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘𝑀) = 𝐵 ↔ (𝑄‘𝑀) = 𝐵)) |
18 | 15, 17 | anbi12d 631 | . . . 4 ⊢ (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵))) |
19 | fveq1 6890 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘𝑖) = (𝑄‘𝑖)) | |
20 | fveq1 6890 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))) | |
21 | 19, 20 | breq12d 5161 | . . . . 5 ⊢ (𝑝 = 𝑄 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
22 | 21 | ralbidv 3177 | . . . 4 ⊢ (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
23 | 18, 22 | anbi12d 631 | . . 3 ⊢ (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
24 | 23 | elrab 3683 | . 2 ⊢ (𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
25 | 13, 24 | bitrdi 286 | 1 ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7411 ↑m cmap 8822 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 < clt 11250 ℕcn 12214 ...cfz 13486 ..^cfzo 13629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 |
This theorem is referenced by: fourierdlem11 44919 fourierdlem12 44920 fourierdlem13 44921 fourierdlem14 44922 fourierdlem15 44923 fourierdlem34 44942 fourierdlem37 44945 fourierdlem41 44949 fourierdlem48 44955 fourierdlem49 44956 fourierdlem50 44957 fourierdlem54 44961 fourierdlem63 44970 fourierdlem64 44971 fourierdlem65 44972 fourierdlem69 44976 fourierdlem70 44977 fourierdlem72 44979 fourierdlem74 44981 fourierdlem75 44982 fourierdlem76 44983 fourierdlem79 44986 fourierdlem81 44988 fourierdlem85 44992 fourierdlem88 44995 fourierdlem89 44996 fourierdlem90 44997 fourierdlem91 44998 fourierdlem92 44999 fourierdlem93 45000 fourierdlem94 45001 fourierdlem97 45004 fourierdlem102 45009 fourierdlem103 45010 fourierdlem104 45011 fourierdlem111 45018 fourierdlem113 45020 fourierdlem114 45021 |
Copyright terms: Public domain | W3C validator |