Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem2 Structured version   Visualization version   GIF version

Theorem fourierdlem2 41114
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem2.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem2
StepHypRef Expression
1 oveq2 6918 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 6926 . . . . 5 (𝑚 = 𝑀 → (ℝ ↑𝑚 (0...𝑚)) = (ℝ ↑𝑚 (0...𝑀)))
3 fveq2 6437 . . . . . . . 8 (𝑚 = 𝑀 → (𝑝𝑚) = (𝑝𝑀))
43eqeq1d 2827 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = 𝐵 ↔ (𝑝𝑀) = 𝐵))
54anbi2d 622 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵)))
6 oveq2 6918 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
76raleqdv 3356 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
85, 7anbi12d 624 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
92, 8rabeqbidv 3408 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 fourierdlem2.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 ovex 6942 . . . . 5 (ℝ ↑𝑚 (0...𝑀)) ∈ V
1211rabex 5039 . . . 4 {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
139, 10, 12fvmpt 6533 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1413eleq2d 2892 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
15 fveq1 6436 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1615eqeq1d 2827 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴))
17 fveq1 6436 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1817eqeq1d 2827 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = 𝐵 ↔ (𝑄𝑀) = 𝐵))
1916, 18anbi12d 624 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵)))
20 fveq1 6436 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
21 fveq1 6436 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2220, 21breq12d 4888 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322ralbidv 3195 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2419, 23anbi12d 624 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2524elrab 3585 . 2 (𝑄 ∈ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2614, 25syl6bb 279 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  {crab 3121   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910  𝑚 cmap 8127  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   < clt 10398  cn 11357  ...cfz 12626  ..^cfzo 12767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-ov 6913
This theorem is referenced by:  fourierdlem11  41123  fourierdlem12  41124  fourierdlem13  41125  fourierdlem14  41126  fourierdlem15  41127  fourierdlem34  41146  fourierdlem37  41149  fourierdlem41  41153  fourierdlem48  41159  fourierdlem49  41160  fourierdlem50  41161  fourierdlem54  41165  fourierdlem63  41174  fourierdlem64  41175  fourierdlem65  41176  fourierdlem69  41180  fourierdlem70  41181  fourierdlem72  41183  fourierdlem74  41185  fourierdlem75  41186  fourierdlem76  41187  fourierdlem79  41190  fourierdlem81  41192  fourierdlem85  41196  fourierdlem88  41199  fourierdlem89  41200  fourierdlem90  41201  fourierdlem91  41202  fourierdlem92  41203  fourierdlem93  41204  fourierdlem94  41205  fourierdlem97  41208  fourierdlem102  41213  fourierdlem103  41214  fourierdlem104  41215  fourierdlem111  41222  fourierdlem113  41224  fourierdlem114  41225
  Copyright terms: Public domain W3C validator