Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem2 Structured version   Visualization version   GIF version

Theorem fourierdlem2 46107
Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem2.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem2
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7403 . . . . 5 (𝑚 = 𝑀 → (ℝ ↑m (0...𝑚)) = (ℝ ↑m (0...𝑀)))
3 fveqeq2 6867 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = 𝐵 ↔ (𝑝𝑀) = 𝐵))
43anbi2d 630 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵)))
5 oveq2 7395 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
65raleqdv 3299 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
74, 6anbi12d 632 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
82, 7rabeqbidv 3424 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9 fourierdlem2.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 ovex 7420 . . . . 5 (ℝ ↑m (0...𝑀)) ∈ V
1110rabex 5294 . . . 4 {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
128, 9, 11fvmpt 6968 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1312eleq2d 2814 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
14 fveq1 6857 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1514eqeq1d 2731 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴))
16 fveq1 6857 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1716eqeq1d 2731 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = 𝐵 ↔ (𝑄𝑀) = 𝐵))
1815, 17anbi12d 632 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵)))
19 fveq1 6857 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
20 fveq1 6857 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2119, 20breq12d 5120 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2221ralbidv 3156 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2318, 22anbi12d 632 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2423elrab 3659 . 2 (𝑄 ∈ {𝑝 ∈ (ℝ ↑m (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2513, 24bitrdi 287 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cn 12186  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390
This theorem is referenced by:  fourierdlem11  46116  fourierdlem12  46117  fourierdlem13  46118  fourierdlem14  46119  fourierdlem15  46120  fourierdlem34  46139  fourierdlem37  46142  fourierdlem41  46146  fourierdlem48  46152  fourierdlem49  46153  fourierdlem50  46154  fourierdlem54  46158  fourierdlem63  46167  fourierdlem64  46168  fourierdlem65  46169  fourierdlem69  46173  fourierdlem70  46174  fourierdlem72  46176  fourierdlem74  46178  fourierdlem75  46179  fourierdlem76  46180  fourierdlem79  46183  fourierdlem81  46185  fourierdlem85  46189  fourierdlem88  46192  fourierdlem89  46193  fourierdlem90  46194  fourierdlem91  46195  fourierdlem92  46196  fourierdlem93  46197  fourierdlem94  46198  fourierdlem97  46201  fourierdlem102  46206  fourierdlem103  46207  fourierdlem104  46208  fourierdlem111  46215  fourierdlem113  46217  fourierdlem114  46218
  Copyright terms: Public domain W3C validator