| Metamath
Proof Explorer Theorem List (p. 452 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | supxrcld 45101 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | elrestd 45102 | A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ 𝐴 = (𝑋 ∩ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) | ||
| Theorem | eliuniincex 45103* | Counterexample to show that the additional conditions in eliuniin 45093 and eliuniin2 45114 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐵 = {∅} & ⊢ 𝐶 = ∅ & ⊢ 𝐷 = ∅ & ⊢ 𝑍 = V ⇒ ⊢ ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) | ||
| Theorem | eliincex 45104* | Counterexample to show that the additional conditions in eliin 4960 and eliin2 45110 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = V & ⊢ 𝐵 = ∅ ⇒ ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | ||
| Theorem | eliinid 45105* | Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
| Theorem | abssf 45106 | Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | ||
| Theorem | supxrubd 45107 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑆 = sup(𝐴, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝑆) | ||
| Theorem | ssrabf 45108 | Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ssrabdf 45109 | Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | eliin2 45110* | Membership in indexed intersection. See eliincex 45104 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4960 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 45098). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
| Theorem | ssrab2f 45111 | Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | ||
| Theorem | restuni3 45112 | The underlying set of a subspace induced by the subspace operator ↾t. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) | ||
| Theorem | rabssf 45113 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) | ||
| Theorem | eliuniin2 45114* | Indexed union of indexed intersections. See eliincex 45104 for a counterexample showing that the precondition 𝐶 ≠ ∅ cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝐶 ≠ ∅ → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
| Theorem | restuni4 45115 | The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) | ||
| Theorem | restuni6 45116 | The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) | ||
| Theorem | restuni5 45117 | The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | unirestss 45118 | The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) ⊆ ∪ 𝐴) | ||
| Theorem | iniin1 45119* | Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) | ||
| Theorem | iniin2 45120* | Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ≠ ∅ → (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶)) | ||
| Theorem | cbvrabv2 45121* | A more general version of cbvrabv 3416. Usage of this theorem is discouraged because it depends on ax-13 2370. Use of cbvrabv2w 45122 is preferred. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | cbvrabv2w 45122* | A more general version of cbvrabv 3416. Version of cbvrabv2 45121 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by GG, 14-Aug-2025.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | iinssiin 45123 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | eliind2 45124* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | iinssd 45125* | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | rabbida2 45126 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | iinexd 45127* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | rabexf 45128 | Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
| Theorem | rabbida3 45129 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | r19.36vf 45130 | Restricted quantifier version of one direction of 19.36 2231. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
| Theorem | raleqd 45131 | Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | iinssf 45132 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iinssdf 45133 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | resabs2i 45134 | Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵) | ||
| Theorem | ssdf2 45135 | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | rabssd 45136 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) | ||
| Theorem | rexnegd 45137 | Minus a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -𝑒𝐴 = -𝐴) | ||
| Theorem | rexlimd3 45138 | * Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | nel1nelini 45139 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ¬ 𝐴 ∈ 𝐵 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | nel2nelini 45140 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ¬ 𝐴 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | eliunid 45141* | Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | reximdd 45142 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | inopnd 45143 | The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
| Theorem | ss2rabdf 45144 | Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | restopn3 45145 | If 𝐴 is open, then 𝐴 is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | restopnssd 45146 | A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) | ||
| Theorem | restsubel 45147 | A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | toprestsubel 45148 | A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | rabidd 45149 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | iunssdf 45150 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iinss2d 45151 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | r19.3rzf 45152 | Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zf 45153 | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | iindif2f 45154 | Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws". (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | ralfal 45155 | Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) | ||
| Theorem | archd 45156* | Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | ||
| Theorem | nimnbi 45157 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
| Theorem | nimnbi2 45158 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜓 → 𝜑) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
| Theorem | notbicom 45159 | Commutative law for the negation of a biconditional. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜓 ↔ 𝜑) | ||
| Theorem | rexeqif 45160 | Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rspced 45161 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | fnresdmss 45162 | A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | ||
| Theorem | fmptsnxp 45163* | Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | ||
| Theorem | fvmpt2bd 45164* | Value of a function given by the maps-to notation. Deduction version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) | ||
| Theorem | rnmptfi 45165* | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐵 ∈ Fin → ran 𝐴 ∈ Fin) | ||
| Theorem | fresin2 45166 | Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) | ||
| Theorem | ffi 45167 | A function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | suprnmpt 45168* | An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐶 = sup(ran 𝐹, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | rnffi 45169 | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → ran 𝐹 ∈ Fin) | ||
| Theorem | mptelpm 45170* | A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) | ||
| Theorem | rnmptpr 45171* | Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐷, 𝐸}) | ||
| Theorem | resmpti 45172* | Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | founiiun 45173* | Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
| Theorem | rnresun 45174 | Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | ||
| Theorem | elrnmptf 45175 | The range of a function in maps-to notation. Same as elrnmpt 5922, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
| Theorem | rnmptssrn 45176* | Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | disjf1 45177* | A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑉) | ||
| Theorem | rnsnf 45178 | The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) | ||
| Theorem | wessf1ornlem 45179* | Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) | ||
| Theorem | wessf1orn 45180* | Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 We 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) | ||
| Theorem | nelrnres 45181 | If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) | ||
| Theorem | disjrnmpt2 45182* | Disjointness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran 𝐹 𝑦) | ||
| Theorem | elrnmpt1sf 45183* | Elementhood in an image set. Same as elrnmpt1s 5923, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) | ||
| Theorem | founiiun0 45184* | Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
| Theorem | disjf1o 45185* | A bijection built from disjoint sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} & ⊢ 𝐷 = (ran 𝐹 ∖ {∅}) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷) | ||
| Theorem | disjinfi 45186* | Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∈ Fin) | ||
| Theorem | fvovco 45187 | Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) | ||
| Theorem | ssnnf1octb 45188* | There exists a bijection between a subset of ℕ and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) | ||
| Theorem | nnf1oxpnn 45189 | There is a bijection between the set of positive integers and the Cartesian product of the set of positive integers with itself. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) | ||
| Theorem | rnmptssd 45190* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
| Theorem | projf1o 45191* | A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈𝐴, 𝑥〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→({𝐴} × 𝐵)) | ||
| Theorem | fvmap 45192 | Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) | ||
| Theorem | fvixp2 45193* | Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | ||
| Theorem | choicefi 45194* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
| Theorem | mpct 45195 | The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) | ||
| Theorem | cnmetcoval 45196 | Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ 𝐷 = (abs ∘ − ) & ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) | ||
| Theorem | fcomptss 45197* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | ||
| Theorem | elmapsnd 45198 | Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹 Fn {𝐴}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) | ||
| Theorem | mapss2 45199 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
| Theorem | fsneq 45200 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |