Home | Metamath
Proof Explorer Theorem List (p. 452 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bits0eALTV 45101 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bits0oALTV 45102 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | divgcdoddALTV 45103 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opoeALTV 45104 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opeoALTV 45105 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | omoeALTV 45106 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | omeoALTV 45107 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmALTV 45108 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0evenALTV 45109 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 0 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0noddALTV 45110 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 0 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 1oddALTV 45111 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 1 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 1nevenALTV 45112 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 1 ∉ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2evenALTV 45113 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 2 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2noddALTV 45114 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 2 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0o1gt2ALTV 45115 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnoALTV 45116 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0oALTV 45117 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0e 45118 | An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nneven 45119 | An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0onn0exALTV 45120* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nn0enn0exALTV 45121* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnennexALTV 45122* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnpw2evenALTV 45123 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | epoo 45124 | The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | emoo 45125 | The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | epee 45126 | The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | emee 45127 | The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evensumeven 45128 | If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 3odd 45129 | 3 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 3 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4even 45130 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 5odd 45131 | 5 is an odd number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 5 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 6even 45132 | 6 is an even number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 7odd 45133 | 7 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8even 45134 | 8 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evenprm2 45135 | A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmne2 45136 | Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | oddprmuzge3 45137 | A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020.) (Proof shortened by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) → 𝑃 ∈ (ℤ≥‘3)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evenltle 45138 | If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | odd2prm2 45139 | If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | even3prm2 45140 | If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mogoldbblem 45141* | Lemma for mogoldbb 45206. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem1 45142 | Lemma for perfectALTV 45144. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem2 45143 | Lemma for perfectALTV 45144. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTV 45144* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16483]. For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 45164] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 45164, 29-May-2023. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cfppr 45145 | Extend class notation with the Fermat pseudoprimes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class FPPr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-fppr 45146* | Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ ∧ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr 45147* | The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprmod 45148* | The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel 45149 | A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprbasnn 45150 | The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprnn 45151 | A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr2odd 45152 | A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11t31e341 45153 | 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (;11 · ;31) = ;;341 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2exp340mod341 45154 | Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((2↑;;340) mod ;;341) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 341fppr2 45155 | 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;;341 ∈ ( FPPr ‘2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4fppr1 45156 | 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ ( FPPr ‘1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8exp8mod9 45157 | Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((8↑8) mod 9) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9fppr8 45158 | 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ ( FPPr ‘8) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfwppr 45159 | Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁↑𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁↑𝑋) − 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwppr 45160 | A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwpprb 45161 | An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel2 45162 | An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl8rev 45163 | Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45158) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl2rev 45164 | Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 45155) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltlrev 45165* | Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020,
https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's
conjecture ... states: Every even integer greater than 2 can be expressed as
the sum of two primes." "It is also known as strong, even or binary Goldbach
conjecture, to distinguish it from a weaker conjecture, known ... as the
_Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary
Goldbach conjecture_. This weak conjecture asserts that all odd numbers
greater than 7 are the sum of three odd primes.". In the following, the
terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will
be used (following the terminology used in [Helfgott] p. 2), because there
are a strong and a weak version of the ternary Goldbach conjecture. The term
_Goldbach partition_ is used for a sum of two resp. three (odd) primes
resulting in an even resp. odd number without further specialization.
Summary/glossary:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbe 45166 | Extend the definition of a class to include the set of even numbers which have a Goldbach partition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbow 45167 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbo 45168 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbe 45169* | Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as ∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbow 45170* | Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbo 45171* | Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbe 45172* | The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbow 45173* | The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbo 45174* | The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbeeven 45175 | An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowodd 45176 | A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbogbow 45177 | A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboodd 45178 | An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbepos 45179 | Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowpos 45180 | Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbopos 45181 | Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbegt5 45182 | Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowgt5 45183 | Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowge7 45184 | Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 45193, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboge9 45185 | Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 45195, this bound is strict. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbege6 45186 | Any even Goldbach number is greater than or equal to 6. Because of 6gbe 45192, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 6 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart6 45187 | The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 = (3 + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart7 45188 | The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 = ((2 + 2) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart8 45189 | The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 = (3 + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart9 45190 | The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 = ((3 + 3) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart11 45191 | The (strong) Goldbach partition of 11. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 = ((3 + 3) + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 6gbe 45192 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 7gbow 45193 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 ∈ GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8gbe 45194 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9gbo 45195 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11gbo 45196 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | stgoldbwt 45197 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbwt 45198* | If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbst 45199* | If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbaltlem1 45200 | Lemma 1 for sbgoldbalt 45202: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |