Home | Metamath
Proof Explorer Theorem List (p. 452 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gbegt5 45101 | Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) |
⊢ (𝑍 ∈ GoldbachEven → 5 < 𝑍) | ||
Theorem | gbowgt5 45102 | Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) |
⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | ||
Theorem | gbowge7 45103 | Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 45112, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) | ||
Theorem | gboge9 45104 | Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 45114, this bound is strict. (Contributed by AV, 26-Jul-2020.) |
⊢ (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍) | ||
Theorem | gbege6 45105 | Any even Goldbach number is greater than or equal to 6. Because of 6gbe 45111, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
⊢ (𝑍 ∈ GoldbachEven → 6 ≤ 𝑍) | ||
Theorem | gbpart6 45106 | The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) |
⊢ 6 = (3 + 3) | ||
Theorem | gbpart7 45107 | The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) |
⊢ 7 = ((2 + 2) + 3) | ||
Theorem | gbpart8 45108 | The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020.) |
⊢ 8 = (3 + 5) | ||
Theorem | gbpart9 45109 | The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) |
⊢ 9 = ((3 + 3) + 3) | ||
Theorem | gbpart11 45110 | The (strong) Goldbach partition of 11. (Contributed by AV, 29-Jul-2020.) |
⊢ ;11 = ((3 + 3) + 5) | ||
Theorem | 6gbe 45111 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
⊢ 6 ∈ GoldbachEven | ||
Theorem | 7gbow 45112 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
⊢ 7 ∈ GoldbachOddW | ||
Theorem | 8gbe 45113 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
⊢ 8 ∈ GoldbachEven | ||
Theorem | 9gbo 45114 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) |
⊢ 9 ∈ GoldbachOdd | ||
Theorem | 11gbo 45115 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) |
⊢ ;11 ∈ GoldbachOdd | ||
Theorem | stgoldbwt 45116 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) |
⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | ||
Theorem | sbgoldbwt 45117* | If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) | ||
Theorem | sbgoldbst 45118* | If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd )) | ||
Theorem | sbgoldbaltlem1 45119 | Lemma 1 for sbgoldbalt 45121: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) | ||
Theorem | sbgoldbaltlem2 45120 | Lemma 2 for sbgoldbalt 45121: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) | ||
Theorem | sbgoldbalt 45121* | An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
Theorem | sbgoldbb 45122* | If the strong binary Goldbach conjecture is valid, the binary Goldbach conjecture is valid. (Contributed by AV, 23-Dec-2021.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
Theorem | sgoldbeven3prm 45123* | If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) | ||
Theorem | sbgoldbm 45124* | If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
Theorem | mogoldbb 45125* | If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.) |
⊢ (∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
Theorem | sbgoldbmb 45126* | The strong binary Goldbach conjecture and the modern version of the original formulation of the Goldbach conjecture are equivalent. (Contributed by AV, 26-Dec-2021.) |
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
Theorem | sbgoldbo 45127* | If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.) |
⊢ 𝑃 = ({1} ∪ ℙ) ⇒ ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘3)∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
Theorem | nnsum3primes4 45128* | 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) |
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | ||
Theorem | nnsum4primes4 45129* | 4 is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | ||
Theorem | nnsum3primesprm 45130* | Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesprm 45131* | Every prime is "the sum of at most 4" (actually one - the prime itself) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum3primesgbe 45132* | Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) |
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesgbe 45133* | Any even Goldbach number is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum3primesle9 45134* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesle9 45135* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 4 primes. (Contributed by AV, 24-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesodd 45136* | If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesoddALTV 45137* | If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | ||
Theorem | evengpop3 45138* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))) | ||
Theorem | evengpoap3 45139* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))) | ||
Theorem | nnsum4primeseven 45140* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | ||
Theorem | nnsum4primesevenALTV 45141* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | ||
Theorem | wtgoldbnnsum4prm 45142* | If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | stgoldbnnsum4prm 45143* | If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020.) |
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | bgoldbnnsum3prm 45144* | If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.) |
⊢ (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
Theorem | bgoldbtbndlem1 45145 | Lemma 1 for bgoldbtbnd 45149: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.) |
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 ∈ (7[,);13)) → 𝑁 ∈ GoldbachOdd ) | ||
Theorem | bgoldbtbndlem2 45146* | Lemma 2 for bgoldbtbnd 45149. (Contributed by AV, 1-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | ||
Theorem | bgoldbtbndlem3 45147* | Lemma 3 for bgoldbtbnd 45149. (Contributed by AV, 1-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) & ⊢ 𝑆 = (𝑋 − (𝐹‘𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | ||
Theorem | bgoldbtbndlem4 45148* | Lemma 4 for bgoldbtbnd 45149. (Contributed by AV, 1-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))) | ||
Theorem | bgoldbtbnd 45149* | If the binary Goldbach conjecture is valid up to an integer 𝑁, and there is a series ("ladder") of primes with a difference of at most 𝑁 up to an integer 𝑀, then the strong ternary Goldbach conjecture is valid up to 𝑀, see section 1.2.2 in [Helfgott] p. 4 with N = 4 x 10^18, taken from [OeSilva], and M = 8.875 x 10^30. (Contributed by AV, 1-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) | ||
Axiom | ax-bgbltosilva 45150 | The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see section 2 in [OeSilva] p. 2042. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) | ||
Axiom | ax-tgoldbachgt 45151* | Temporary duplicate of tgoldbachgt 32543, provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | ||
Theorem | tgoldbachgtALTV 45152* | Variant of Thierry Arnoux's tgoldbachgt 32543 using the symbols Odd and GoldbachOdd: The ternary Goldbach conjecture is valid for large odd numbers (i.e. for all odd numbers greater than a fixed 𝑚). This is proven by Helfgott (see section 7.4 in [Helfgott] p. 70) for 𝑚 = 10^27. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 15-Jan-2022.) |
⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd )) | ||
Theorem | bgoldbachlt 45153* | The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 45150. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ∃𝑚 ∈ ℕ ((4 · (;10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) | ||
Axiom | ax-hgprmladder 45154 | There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in [Helfgott] p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ∃𝑑 ∈ (ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) | ||
Theorem | tgblthelfgott 45155 | The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in [Helfgott] p. 4, using bgoldbachlt 45153, ax-hgprmladder 45154 and bgoldbtbnd 45149. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 < (;88 · (;10↑;29))) → 𝑁 ∈ GoldbachOdd ) | ||
Theorem | tgoldbachlt 45156* | The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 45155. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ∃𝑚 ∈ ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) | ||
Theorem | tgoldbach 45157 | The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 45156 and ax-tgoldbachgt 45151. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) | ||
In the following, a general definition of the isomorphy relation for graphs and specializations for simple hypergraphs (isomushgr 45166) and simple pseudographs (isomuspgr 45174) are provided. The latter corresponds to the definition in [Bollobas] p. 3). It is shown that the isomorphy relation for graphs is an equivalence relation (isomgrref 45175, isomgrsym 45176, isomgrtr 45179). Fianlly, isomorphic graphs with different representations are studied (strisomgrop 45180, ushrisomgr 45181). Maybe more important than graph isomorphy is the notion of graph isomorphism, which can be defined as in df-grisom 45160. Then 𝐴 IsomGr 𝐵 ↔ ∃𝑓𝑓 ∈ (𝐴 GrIsom 𝐵) resp. 𝐴 IsomGr 𝐵 ↔ (𝐴 GrIsom 𝐵) ≠ ∅. Notice that there can be multiple isomorphisms between two graphs (let 〈{𝐴, 𝐵}, {{𝐴, 𝐵}}〉 and 〈{{𝑀, 𝑁}, {{𝑀, 𝑁}}〉 be two graphs with two vertices and one edge, then 𝐴 ↦ 𝑀, 𝐵 ↦ 𝑁 and 𝐴 ↦ 𝑁, 𝐵 ↦ 𝑀 are two different isomorphisms between these graphs). Another approach could be to define a category of graphs (there are maybe multiple ones), where graph morphisms are couples consisting in a function on vertices and a function on edges with required compatibilities, as used in the definition of GrIsom. And then, a graph isomorphism is defined as an isomorphism in the category of graphs (something like "GraphIsom = ( Iso ` GraphCat )" ). Then general category theory theorems could be used, e.g., to show that graph isomorphy is an equivalence relation. | ||
Syntax | cgrisom 45158 | Extend class notation to include the graph ispmorphisms. |
class GrIsom | ||
Syntax | cisomgr 45159 | Extend class notation to include the isomorphy relation for graphs. |
class IsomGr | ||
Definition | df-grisom 45160* | Define the class of all isomorphisms between two graphs. (Contributed by AV, 11-Dec-2022.) |
⊢ GrIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) | ||
Definition | df-isomgr 45161* | Define the isomorphy relation for graphs. (Contributed by AV, 11-Nov-2022.) |
⊢ IsomGr = {〈𝑥, 𝑦〉 ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))))} | ||
Theorem | isomgrrel 45162 | The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) |
⊢ Rel IsomGr | ||
Theorem | isomgr 45163* | The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
Theorem | isisomgr 45164* | Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ (𝐴 IsomGr 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) | ||
Theorem | isomgreqve 45165 | A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022.) |
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵) | ||
Theorem | isomushgr 45166* | The isomorphy relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
Theorem | isomuspgrlem1 45167* | Lemma 1 for isomuspgr 45174. (Contributed by AV, 29-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾 → {𝑎, 𝑏} ∈ 𝐸)) | ||
Theorem | isomuspgrlem2a 45168* | Lemma 1 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) ⇒ ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) | ||
Theorem | isomuspgrlem2b 45169* | Lemma 2 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ USPGraph) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐾)) ⇒ ⊢ (𝜑 → 𝐺:𝐸⟶𝐾) | ||
Theorem | isomuspgrlem2c 45170* | Lemma 3 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ USPGraph) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐺:𝐸–1-1→𝐾) | ||
Theorem | isomuspgrlem2d 45171* | Lemma 4 for isomuspgrlem2 45173. (Contributed by AV, 1-Dec-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ USPGraph) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ USPGraph) ⇒ ⊢ (𝜑 → 𝐺:𝐸–onto→𝐾) | ||
Theorem | isomuspgrlem2e 45172* | Lemma 5 for isomuspgrlem2 45173. (Contributed by AV, 1-Dec-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ USPGraph) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) & ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ USPGraph) ⇒ ⊢ (𝜑 → 𝐺:𝐸–1-1-onto→𝐾) | ||
Theorem | isomuspgrlem2 45173* | Lemma 2 for isomuspgr 45174. (Contributed by AV, 1-Dec-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) | ||
Theorem | isomuspgr 45174* | The isomorphy relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) |
⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) | ||
Theorem | isomgrref 45175 | The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) |
⊢ (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺) | ||
Theorem | isomgrsym 45176 | The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) → (𝐴 IsomGr 𝐵 → 𝐵 IsomGr 𝐴)) | ||
Theorem | isomgrsymb 45177 | The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 IsomGr 𝐵 ↔ 𝐵 IsomGr 𝐴)) | ||
Theorem | isomgrtrlem 45178* | Lemma for isomgrtr 45179. (Contributed by AV, 5-Dec-2022.) |
⊢ (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤 ∘ 𝑔)‘𝑗))) | ||
Theorem | isomgrtr 45179 | The isomorphy relation is transitive for hypergraphs. (Contributed by AV, 5-Dec-2022.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋) → ((𝐴 IsomGr 𝐵 ∧ 𝐵 IsomGr 𝐶) → 𝐴 IsomGr 𝐶)) | ||
Theorem | strisomgrop 45180 | A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 IsomGr 𝐻) | ||
Theorem | ushrisomgr 45181 | A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻) | ||
Theorem | 1hegrlfgr 45182* | A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) ⇒ ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
Syntax | cupwlks 45183 | Extend class notation with walks (of a pseudograph). |
class UPWalks | ||
Definition | df-upwlks 45184* |
Define the set of all walks (in a pseudograph), called "simple walks"
in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | upwlksfval 45185* | The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | isupwlk 45186* | Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | isupwlkg 45187* | Generalization of isupwlk 45186: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upwlkbprop 45188 | Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
Theorem | upwlkwlk 45189 | A simple walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 27-Feb-2021.) |
⊢ (𝐹(UPWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlk 45190 | In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlkb 45191 | In a pseudograph, the definitions for a walk and a simple walk are equivalent. (Contributed by AV, 30-Dec-2020.) |
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ 𝐹(UPWalks‘𝐺)𝑃)) | ||
Theorem | upgrisupwlkALT 45192* | Alternate proof of upgriswlk 27910 using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upgredgssspr 45193 | The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021.) |
⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ (Pairs‘(Vtx‘𝐺))) | ||
Theorem | uspgropssxp 45194* | The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45204. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) | ||
Theorem | uspgrsprfv 45195* | The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 45201. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) | ||
Theorem | uspgrsprf 45196* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺⟶𝑃 | ||
Theorem | uspgrsprf1 45197* | The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺–1-1→𝑃 | ||
Theorem | uspgrsprfo 45198* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–onto→𝑃) | ||
Theorem | uspgrsprf1o 45199* | The mapping 𝐹 is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. See also the comments on uspgrbisymrel 45204. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrex 45200* | The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |