![]() |
Metamath
Proof Explorer Theorem List (p. 452 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ssnnf1octb 45101* | There exists a bijection between a subset of ℕ and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) | ||
Theorem | nnf1oxpnn 45102 | There is a bijection between the set of positive integers and the Cartesian product of the set of positive integers with itself. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) | ||
Theorem | rnmptssd 45103* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | projf1o 45104* | A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈𝐴, 𝑥〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→({𝐴} × 𝐵)) | ||
Theorem | fvmap 45105 | Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) | ||
Theorem | fvixp2 45106* | Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | ||
Theorem | choicefi 45107* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
Theorem | mpct 45108 | The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) | ||
Theorem | cnmetcoval 45109 | Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝐷 = (abs ∘ − ) & ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) | ||
Theorem | fcomptss 45110* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | ||
Theorem | elmapsnd 45111 | Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹 Fn {𝐴}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) | ||
Theorem | mapss2 45112 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | fsneq 45113 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) | ||
Theorem | difmap 45114 | Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ↑m 𝐶) ⊆ ((𝐴 ↑m 𝐶) ∖ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmap 45115 | Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 ⊆ (ran ∪ 𝑋 ↑m 𝐴)) | ||
Theorem | inmap 45116 | Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) = ((𝐴 ∩ 𝐵) ↑m 𝐶)) | ||
Theorem | fcoss 45117 | Composition of two mappings. Similar to fco 6771, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | ||
Theorem | fsneqrn 45118 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) ∈ ran 𝐺)) | ||
Theorem | difmapsn 45119 | Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) = ((𝐴 ∖ 𝐵) ↑m {𝐶})) | ||
Theorem | mapssbi 45120 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmapsn 45121 | Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐶 = {𝐴} & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐶)) ⇒ ⊢ (𝜑 → 𝑋 = (ran ∪ 𝑋 ↑m 𝐶)) | ||
Theorem | iunmapss 45122* | The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | ||
Theorem | ssmapsn 45123* | A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑓𝐷 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑m {𝐴})) & ⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 ⇒ ⊢ (𝜑 → 𝐶 = (𝐷 ↑m {𝐴})) | ||
Theorem | iunmapsn 45124* | The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m {𝐶}) = (∪ 𝑥 ∈ 𝐴 𝐵 ↑m {𝐶})) | ||
Theorem | absfico 45125 | Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ abs:ℂ⟶(0[,)+∞) | ||
Theorem | icof 45126 | The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | elpmrn 45127 | The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ran 𝐹 ⊆ 𝐴) | ||
Theorem | imaexi 45128 | The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by SN, 27-Apr-2025.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
Theorem | axccdom 45129* | Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | dmmptdff 45130 | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | dmmptdf 45131* | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | elpmi2 45132 | The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → dom 𝐹 ⊆ 𝐵) | ||
Theorem | dmrelrnrel 45133* | A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)) | ||
Theorem | fvcod 45134 | Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) & ⊢ 𝐻 = (𝐹 ∘ 𝐺) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) | ||
Theorem | elrnmpoid 45135* | Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹) | ||
Theorem | axccd 45136* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | ||
Theorem | axccd2 45137* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | ||
Theorem | feqresmptf 45138* | Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) | ||
Theorem | dmmptssf 45139 | The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | dmmptdf2 45140 | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | dmuz 45141 | Domain of the upper integers function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ dom ℤ≥ = ℤ | ||
Theorem | fmptd2f 45142* | Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | ||
Theorem | mpteq1df 45143 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mpteq1dfOLD 45144 | Obsolete version of mpteq1df 45143 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mptexf 45145 | If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 7258. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
Theorem | fvmpt4 45146* | Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | ||
Theorem | fmptf 45147* | Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐵 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | resimass 45148 | The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝐴 ↾ 𝐵) “ 𝐶) ⊆ (𝐴 “ 𝐶) | ||
Theorem | mptssid 45149 | The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) | ||
Theorem | mptfnd 45150 | The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | ||
Theorem | mpteq12daOLD 45151 | Obsolete version of mpteq12da 5251 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | rnmptlb 45152* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) | ||
Theorem | rnmptbddlem 45153* | Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | ||
Theorem | rnmptbdd 45154* | Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | ||
Theorem | funimaeq 45155* | Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) | ||
Theorem | rnmptssf 45156* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | rnmptbd2lem 45157* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) | ||
Theorem | rnmptbd2 45158* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) | ||
Theorem | infnsuprnmpt 45159* | The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) | ||
Theorem | suprclrnmpt 45160* | Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in maps-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ∈ ℝ) | ||
Theorem | suprubrnmpt2 45161* | A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
Theorem | suprubrnmpt 45162* | A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
Theorem | rnmptssdf 45163* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | rnmptbdlem 45164* | Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) | ||
Theorem | rnmptbd 45165* | Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) | ||
Theorem | rnmptss2 45166* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | elmptima 45167* | The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) | ||
Theorem | ralrnmpt3 45168* | A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | fvelima2 45169* | Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) | ||
Theorem | rnmptssbi 45170* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) | ||
Theorem | imass2d 45171 | Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
Theorem | imassmpt 45172* | Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) | ||
Theorem | fpmd 45173 | A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
Theorem | fconst7 45174* | An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) ⇒ ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) | ||
Theorem | fnmptif 45175 | Functionality and domain of an ordered-pair class abstraction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐵 ∈ V & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ 𝐹 Fn 𝐴 | ||
Theorem | dmmptif 45176 | Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐵 ∈ V & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = 𝐴 | ||
Theorem | mpteq2dfa 45177 | Slightly more general equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | dmmpt1 45178 | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) = 𝐵) | ||
Theorem | fmptff 45179 | Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | fvmptelcdmf 45180 | The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | ||
Theorem | fmptdff 45181 | A version of fmptd 7148 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fvmpt2df 45182 | Deduction version of fvmpt2 7040. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | ||
Theorem | rn1st 45183 | The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23481, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | rnmptssff 45184 | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | rnmptssdff 45185 | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | fvmpt4d 45186 | Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | ||
Theorem | sub2times 45187 | Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) | ||
Theorem | nnxrd 45188 | A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | nnxr 45189 | A natural number is an extended real. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*) | ||
Theorem | abssubrp 45190 | The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵) → (abs‘(𝐴 − 𝐵)) ∈ ℝ+) | ||
Theorem | elfzfzo 45191 | Relationship between membership in a half-open finite set of sequential integers and membership in a finite set of sequential intergers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝑀..^𝑁) ↔ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐴 < 𝑁)) | ||
Theorem | oddfl 45192 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
Theorem | abscosbd 45193 | Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → (abs‘(cos‘𝐴)) ≤ 1) | ||
Theorem | mul13d 45194 | Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) | ||
Theorem | negpilt0 45195 | Negative π is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ -π < 0 | ||
Theorem | dstregt0 45196* | A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) | ||
Theorem | subadd4b 45197 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) | ||
Theorem | xrlttri5d 45198 | Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
Theorem | neglt 45199 | The negative of a positive number is less than the number itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ+ → -𝐴 < 𝐴) | ||
Theorem | zltlesub 45200 | If an integer 𝑁 is less than or equal to a real, and we subtract a quantity less than 1, then 𝑁 is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |