| Metamath
Proof Explorer Theorem List (p. 452 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iuneq1i 45101 | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 | ||
| Theorem | nssrex 45102* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | ssinc 45103* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) | ||
| Theorem | ssdec 45104* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) | ||
| Theorem | elixpconstg 45105* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) | ||
| Theorem | iineq1d 45106* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | metpsmet 45107 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
| Theorem | ixpssixp 45108 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ballss3 45109* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) | ||
| Theorem | iunincfi 45110* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) = (𝐹‘𝑁)) | ||
| Theorem | nsstr 45111 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) | ||
| Theorem | rexanuz3 45112* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) & ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) & ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) | ||
| Theorem | cbvmpo2 45113* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑤𝐴 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑤 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | cbvmpo1 45114* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | eliuniin 45115* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝑍 ∈ 𝑉 → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
| Theorem | ssabf 45116 | Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
| Theorem | pssnssi 45117 | A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 ⊊ 𝐵 ⇒ ⊢ ¬ 𝐵 ⊆ 𝐴 | ||
| Theorem | rabidim2 45118 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) | ||
| Theorem | eluni2f 45119* | Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
| Theorem | eliin2f 45120* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
| Theorem | nssd 45121 | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) | ||
| Theorem | iineq12dv 45122* | Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | ||
| Theorem | supxrcld 45123 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | elrestd 45124 | A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ 𝐴 = (𝑋 ∩ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) | ||
| Theorem | eliuniincex 45125* | Counterexample to show that the additional conditions in eliuniin 45115 and eliuniin2 45136 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐵 = {∅} & ⊢ 𝐶 = ∅ & ⊢ 𝐷 = ∅ & ⊢ 𝑍 = V ⇒ ⊢ ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) | ||
| Theorem | eliincex 45126* | Counterexample to show that the additional conditions in eliin 4944 and eliin2 45132 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = V & ⊢ 𝐵 = ∅ ⇒ ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | ||
| Theorem | eliinid 45127* | Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
| Theorem | abssf 45128 | Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | ||
| Theorem | supxrubd 45129 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑆 = sup(𝐴, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝑆) | ||
| Theorem | ssrabf 45130 | Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | ssrabdf 45131 | Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | eliin2 45132* | Membership in indexed intersection. See eliincex 45126 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4944 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 45120). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
| Theorem | ssrab2f 45133 | Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | ||
| Theorem | restuni3 45134 | The underlying set of a subspace induced by the subspace operator ↾t. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) | ||
| Theorem | rabssf 45135 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) | ||
| Theorem | eliuniin2 45136* | Indexed union of indexed intersections. See eliincex 45126 for a counterexample showing that the precondition 𝐶 ≠ ∅ cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝐶 ≠ ∅ → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
| Theorem | restuni4 45137 | The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = 𝐵) | ||
| Theorem | restuni6 45138 | The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) | ||
| Theorem | restuni5 45139 | The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | unirestss 45140 | The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) ⊆ ∪ 𝐴) | ||
| Theorem | iniin1 45141* | Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ≠ ∅ → (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵)) | ||
| Theorem | iniin2 45142* | Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ≠ ∅ → (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶)) | ||
| Theorem | cbvrabv2 45143* | A more general version of cbvrabv 3403. Usage of this theorem is discouraged because it depends on ax-13 2371. Use of cbvrabv2w 45144 is preferred. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | cbvrabv2w 45144* | A more general version of cbvrabv 3403. Version of cbvrabv2 45143 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by GG, 14-Aug-2025.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | iinssiin 45145 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | eliind2 45146* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | iinssd 45147* | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | rabbida2 45148 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | iinexd 45149* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | rabexf 45150 | Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
| Theorem | rabbida3 45151 | Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | r19.36vf 45152 | Restricted quantifier version of one direction of 19.36 2232. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) | ||
| Theorem | raleqd 45153 | Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | iinssf 45154 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iinssdf 45155 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | resabs2i 45156 | Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵) | ||
| Theorem | ssdf2 45157 | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | rabssd 45158 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) | ||
| Theorem | rexnegd 45159 | Minus a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -𝑒𝐴 = -𝐴) | ||
| Theorem | rexlimd3 45160 | * Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
| Theorem | nel1nelini 45161 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ¬ 𝐴 ∈ 𝐵 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | nel2nelini 45162 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ¬ 𝐴 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
| Theorem | eliunid 45163* | Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | reximdd 45164 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | inopnd 45165 | The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
| Theorem | ss2rabdf 45166 | Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | restopn3 45167 | If 𝐴 is open, then 𝐴 is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | restopnssd 45168 | A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) | ||
| Theorem | restsubel 45169 | A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | toprestsubel 45170 | A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
| Theorem | rabidd 45171 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | iunssdf 45172 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iinss2d 45173 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | r19.3rzf 45174 | Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zf 45175 | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | iindif2f 45176 | Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws". (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | ralfal 45177 | Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) | ||
| Theorem | archd 45178* | Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | ||
| Theorem | nimnbi 45179 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
| Theorem | nimnbi2 45180 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜓 → 𝜑) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
| Theorem | notbicom 45181 | Commutative law for the negation of a biconditional. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ ¬ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜓 ↔ 𝜑) | ||
| Theorem | rexeqif 45182 | Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rspced 45183 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | fnresdmss 45184 | A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | ||
| Theorem | fmptsnxp 45185* | Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | ||
| Theorem | fvmpt2bd 45186* | Value of a function given by the maps-to notation. Deduction version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) | ||
| Theorem | rnmptfi 45187* | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐵 ∈ Fin → ran 𝐴 ∈ Fin) | ||
| Theorem | fresin2 45188 | Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) | ||
| Theorem | ffi 45189 | A function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | suprnmpt 45190* | An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐶 = sup(ran 𝐹, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | rnffi 45191 | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → ran 𝐹 ∈ Fin) | ||
| Theorem | mptelpm 45192* | A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) | ||
| Theorem | rnmptpr 45193* | Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐷, 𝐸}) | ||
| Theorem | resmpti 45194* | Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | founiiun 45195* | Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
| Theorem | rnresun 45196 | Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | ||
| Theorem | elrnmptf 45197 | The range of a function in maps-to notation. Same as elrnmpt 5895, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
| Theorem | rnmptssrn 45198* | Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | disjf1 45199* | A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑉) | ||
| Theorem | rnsnf 45200 | The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |