Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem4 Structured version   Visualization version   GIF version

Theorem fourierdlem4 46107
Description: 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem4.a (𝜑𝐴 ∈ ℝ)
fourierdlem4.b (𝜑𝐵 ∈ ℝ)
fourierdlem4.altb (𝜑𝐴 < 𝐵)
fourierdlem4.t 𝑇 = (𝐵𝐴)
fourierdlem4.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem4 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem fourierdlem4
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2 fourierdlem4.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
32adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
43, 1resubcld 11670 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
5 fourierdlem4.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
6 fourierdlem4.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
72, 6resubcld 11670 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
85, 7eqeltrid 2839 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
105a1i 11 . . . . . . . . . 10 (𝜑𝑇 = (𝐵𝐴))
112recnd 11268 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
126recnd 11268 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
13 fourierdlem4.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
146, 13gtned 11375 . . . . . . . . . . 11 (𝜑𝐵𝐴)
1511, 12, 14subne0d 11608 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
1610, 15eqnetrd 3000 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
184, 9, 17redivcld 12074 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
1918flcld 13820 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
2019zred 12702 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
2120, 9remulcld 11270 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221, 21readdcld 11269 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
236adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
2423, 1resubcld 11670 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℝ)
2524, 9, 17redivcld 12074 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) ∈ ℝ)
2625, 9remulcld 11270 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) ∈ ℝ)
2711addridd 11440 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqcomd 2742 . . . . . . . . . . . . . 14 (𝜑𝐵 = (𝐵 + 0))
2911, 12subcld 11599 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029subidd 11587 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) − (𝐵𝐴)) = 0)
3130eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑 → 0 = ((𝐵𝐴) − (𝐵𝐴)))
3231oveq2d 7426 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 0) = (𝐵 + ((𝐵𝐴) − (𝐵𝐴))))
3311, 29, 29addsub12d 11622 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = ((𝐵𝐴) + (𝐵 − (𝐵𝐴))))
3411, 12nncand 11604 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3534oveq2d 7426 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + (𝐵 − (𝐵𝐴))) = ((𝐵𝐴) + 𝐴))
3629, 12addcomd 11442 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + (𝐵𝐴)))
3710eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) = 𝑇)
3837oveq2d 7426 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + (𝐵𝐴)) = (𝐴 + 𝑇))
3936, 38eqtrd 2771 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + 𝑇))
4033, 35, 393eqtrd 2775 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = (𝐴 + 𝑇))
4128, 32, 403eqtrd 2775 . . . . . . . . . . . . 13 (𝜑𝐵 = (𝐴 + 𝑇))
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐵 = (𝐴 + 𝑇))
4342oveq1d 7425 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴 + 𝑇) − 𝑥))
4412adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
459recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
461recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4744, 45, 46addsubd 11620 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((𝐴 + 𝑇) − 𝑥) = ((𝐴𝑥) + 𝑇))
4843, 47eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴𝑥) + 𝑇))
4948oveq1d 7425 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) + 𝑇) / 𝑇))
5044, 46subcld 11599 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℂ)
5150, 45, 45, 17divdird 12060 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) + 𝑇) / 𝑇) = (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)))
525, 29eqeltrid 2839 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
5352, 16dividd 12020 . . . . . . . . . . 11 (𝜑 → (𝑇 / 𝑇) = 1)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑇 / 𝑇) = 1)
5554oveq2d 7426 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)) = (((𝐴𝑥) / 𝑇) + 1))
5649, 51, 553eqtrd 2775 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) / 𝑇) + 1))
5756fveq2d 6885 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
5857oveq1d 7425 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
5958, 21eqeltrrd 2836 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇) ∈ ℝ)
60 peano2re 11413 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
6125, 60syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
62 reflcl 13818 . . . . . . 7 ((((𝐴𝑥) / 𝑇) + 1) ∈ ℝ → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
6361, 62syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
646, 2posdifd 11829 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
6513, 64mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
6665, 10breqtrrd 5152 . . . . . . . 8 (𝜑 → 0 < 𝑇)
678, 66elrpd 13053 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
6867adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ+)
69 flltp1 13822 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7025, 69syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
71 1zzd 12628 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
72 fladdz 13847 . . . . . . . 8 ((((𝐴𝑥) / 𝑇) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7325, 71, 72syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7470, 73breqtrrd 5152 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
7525, 63, 68, 74ltmul1dd 13111 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) < ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
7626, 59, 1, 75ltadd2dd 11399 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) < (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
7750, 45, 17divcan1d 12023 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) = (𝐴𝑥))
7877oveq2d 7426 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐴𝑥)))
7946, 44pncan3d 11602 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐴𝑥)) = 𝐴)
8078, 79eqtrd 2771 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = 𝐴)
8158oveq2d 7426 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
8281eqcomd 2742 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8376, 80, 823brtr3d 5155 . . 3 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8418, 9remulcld 11270 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) ∈ ℝ)
85 flle 13821 . . . . . . 7 (((𝐵𝑥) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8618, 85syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8720, 18, 68lemul1d 13099 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇) ↔ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇)))
8886, 87mpbid 232 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇))
8921, 84, 1, 88leadd2dd 11857 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)))
904recnd 11268 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℂ)
9190, 45, 17divcan1d 12023 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) = (𝐵𝑥))
9291oveq2d 7426 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐵𝑥)))
9311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9446, 93pncan3d 11602 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐵𝑥)) = 𝐵)
9592, 94eqtrd 2771 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = 𝐵)
9689, 95breqtrd 5150 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)
9723rexrd 11290 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
98 elioc2 13431 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
9997, 3, 98syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
10022, 83, 96, 99mpbir3and 1343 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
101 fourierdlem4.e . 2 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
102100, 101fmptd 7109 1 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cz 12593  +crp 13013  (,]cioc 13368  cfl 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ioc 13372  df-fl 13814
This theorem is referenced by:  fourierdlem19  46122  fourierdlem37  46140  fourierdlem41  46144  fourierdlem48  46150  fourierdlem49  46151  fourierdlem51  46153  fourierdlem63  46165  fourierdlem65  46167  fourierdlem71  46173  fourierdlem79  46181  fourierdlem89  46191  fourierdlem90  46192  fourierdlem91  46193  fourierdlem102  46204  fourierdlem114  46216
  Copyright terms: Public domain W3C validator