Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem4 Structured version   Visualization version   GIF version

Theorem fourierdlem4 46082
Description: 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem4.a (𝜑𝐴 ∈ ℝ)
fourierdlem4.b (𝜑𝐵 ∈ ℝ)
fourierdlem4.altb (𝜑𝐴 < 𝐵)
fourierdlem4.t 𝑇 = (𝐵𝐴)
fourierdlem4.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem4 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem fourierdlem4
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2 fourierdlem4.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
32adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
43, 1resubcld 11582 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
5 fourierdlem4.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
6 fourierdlem4.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
72, 6resubcld 11582 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
85, 7eqeltrid 2832 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
105a1i 11 . . . . . . . . . 10 (𝜑𝑇 = (𝐵𝐴))
112recnd 11178 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
126recnd 11178 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
13 fourierdlem4.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
146, 13gtned 11285 . . . . . . . . . . 11 (𝜑𝐵𝐴)
1511, 12, 14subne0d 11518 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
1610, 15eqnetrd 2992 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
184, 9, 17redivcld 11986 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
1918flcld 13736 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
2019zred 12614 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
2120, 9remulcld 11180 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221, 21readdcld 11179 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
236adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
2423, 1resubcld 11582 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℝ)
2524, 9, 17redivcld 11986 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) ∈ ℝ)
2625, 9remulcld 11180 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) ∈ ℝ)
2711addridd 11350 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑𝐵 = (𝐵 + 0))
2911, 12subcld 11509 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029subidd 11497 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) − (𝐵𝐴)) = 0)
3130eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → 0 = ((𝐵𝐴) − (𝐵𝐴)))
3231oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 0) = (𝐵 + ((𝐵𝐴) − (𝐵𝐴))))
3311, 29, 29addsub12d 11532 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = ((𝐵𝐴) + (𝐵 − (𝐵𝐴))))
3411, 12nncand 11514 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3534oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + (𝐵 − (𝐵𝐴))) = ((𝐵𝐴) + 𝐴))
3629, 12addcomd 11352 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + (𝐵𝐴)))
3710eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) = 𝑇)
3837oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + (𝐵𝐴)) = (𝐴 + 𝑇))
3936, 38eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + 𝑇))
4033, 35, 393eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = (𝐴 + 𝑇))
4128, 32, 403eqtrd 2768 . . . . . . . . . . . . 13 (𝜑𝐵 = (𝐴 + 𝑇))
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐵 = (𝐴 + 𝑇))
4342oveq1d 7384 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴 + 𝑇) − 𝑥))
4412adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
459recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
461recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4744, 45, 46addsubd 11530 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((𝐴 + 𝑇) − 𝑥) = ((𝐴𝑥) + 𝑇))
4843, 47eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴𝑥) + 𝑇))
4948oveq1d 7384 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) + 𝑇) / 𝑇))
5044, 46subcld 11509 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℂ)
5150, 45, 45, 17divdird 11972 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) + 𝑇) / 𝑇) = (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)))
525, 29eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
5352, 16dividd 11932 . . . . . . . . . . 11 (𝜑 → (𝑇 / 𝑇) = 1)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑇 / 𝑇) = 1)
5554oveq2d 7385 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)) = (((𝐴𝑥) / 𝑇) + 1))
5649, 51, 553eqtrd 2768 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) / 𝑇) + 1))
5756fveq2d 6844 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
5857oveq1d 7384 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
5958, 21eqeltrrd 2829 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇) ∈ ℝ)
60 peano2re 11323 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
6125, 60syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
62 reflcl 13734 . . . . . . 7 ((((𝐴𝑥) / 𝑇) + 1) ∈ ℝ → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
6361, 62syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
646, 2posdifd 11741 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
6513, 64mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
6665, 10breqtrrd 5130 . . . . . . . 8 (𝜑 → 0 < 𝑇)
678, 66elrpd 12968 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
6867adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ+)
69 flltp1 13738 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7025, 69syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
71 1zzd 12540 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
72 fladdz 13763 . . . . . . . 8 ((((𝐴𝑥) / 𝑇) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7325, 71, 72syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7470, 73breqtrrd 5130 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
7525, 63, 68, 74ltmul1dd 13026 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) < ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
7626, 59, 1, 75ltadd2dd 11309 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) < (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
7750, 45, 17divcan1d 11935 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) = (𝐴𝑥))
7877oveq2d 7385 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐴𝑥)))
7946, 44pncan3d 11512 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐴𝑥)) = 𝐴)
8078, 79eqtrd 2764 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = 𝐴)
8158oveq2d 7385 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
8281eqcomd 2735 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8376, 80, 823brtr3d 5133 . . 3 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8418, 9remulcld 11180 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) ∈ ℝ)
85 flle 13737 . . . . . . 7 (((𝐵𝑥) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8618, 85syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8720, 18, 68lemul1d 13014 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇) ↔ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇)))
8886, 87mpbid 232 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇))
8921, 84, 1, 88leadd2dd 11769 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)))
904recnd 11178 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℂ)
9190, 45, 17divcan1d 11935 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) = (𝐵𝑥))
9291oveq2d 7385 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐵𝑥)))
9311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9446, 93pncan3d 11512 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐵𝑥)) = 𝐵)
9592, 94eqtrd 2764 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = 𝐵)
9689, 95breqtrd 5128 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)
9723rexrd 11200 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
98 elioc2 13346 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
9997, 3, 98syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
10022, 83, 96, 99mpbir3and 1343 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
101 fourierdlem4.e . 2 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
102100, 101fmptd 7068 1 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cz 12505  +crp 12927  (,]cioc 13283  cfl 13728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioc 13287  df-fl 13730
This theorem is referenced by:  fourierdlem19  46097  fourierdlem37  46115  fourierdlem41  46119  fourierdlem48  46125  fourierdlem49  46126  fourierdlem51  46128  fourierdlem63  46140  fourierdlem65  46142  fourierdlem71  46148  fourierdlem79  46156  fourierdlem89  46166  fourierdlem90  46167  fourierdlem91  46168  fourierdlem102  46179  fourierdlem114  46191
  Copyright terms: Public domain W3C validator