Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem4 Structured version   Visualization version   GIF version

Theorem fourierdlem4 46149
Description: 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem4.a (𝜑𝐴 ∈ ℝ)
fourierdlem4.b (𝜑𝐵 ∈ ℝ)
fourierdlem4.altb (𝜑𝐴 < 𝐵)
fourierdlem4.t 𝑇 = (𝐵𝐴)
fourierdlem4.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem4 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem fourierdlem4
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2 fourierdlem4.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
32adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
43, 1resubcld 11540 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
5 fourierdlem4.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
6 fourierdlem4.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
72, 6resubcld 11540 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
85, 7eqeltrid 2835 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
105a1i 11 . . . . . . . . . 10 (𝜑𝑇 = (𝐵𝐴))
112recnd 11135 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
126recnd 11135 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
13 fourierdlem4.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
146, 13gtned 11243 . . . . . . . . . . 11 (𝜑𝐵𝐴)
1511, 12, 14subne0d 11476 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
1610, 15eqnetrd 2995 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
1716adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
184, 9, 17redivcld 11944 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
1918flcld 13697 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
2019zred 12572 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
2120, 9remulcld 11137 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221, 21readdcld 11136 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
236adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
2423, 1resubcld 11540 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℝ)
2524, 9, 17redivcld 11944 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) ∈ ℝ)
2625, 9remulcld 11137 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) ∈ ℝ)
2711addridd 11308 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑𝐵 = (𝐵 + 0))
2911, 12subcld 11467 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029subidd 11455 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) − (𝐵𝐴)) = 0)
3130eqcomd 2737 . . . . . . . . . . . . . . 15 (𝜑 → 0 = ((𝐵𝐴) − (𝐵𝐴)))
3231oveq2d 7357 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 0) = (𝐵 + ((𝐵𝐴) − (𝐵𝐴))))
3311, 29, 29addsub12d 11490 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = ((𝐵𝐴) + (𝐵 − (𝐵𝐴))))
3411, 12nncand 11472 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3534oveq2d 7357 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + (𝐵 − (𝐵𝐴))) = ((𝐵𝐴) + 𝐴))
3629, 12addcomd 11310 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + (𝐵𝐴)))
3710eqcomd 2737 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) = 𝑇)
3837oveq2d 7357 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + (𝐵𝐴)) = (𝐴 + 𝑇))
3936, 38eqtrd 2766 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + 𝑇))
4033, 35, 393eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = (𝐴 + 𝑇))
4128, 32, 403eqtrd 2770 . . . . . . . . . . . . 13 (𝜑𝐵 = (𝐴 + 𝑇))
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐵 = (𝐴 + 𝑇))
4342oveq1d 7356 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴 + 𝑇) − 𝑥))
4412adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
459recnd 11135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
461recnd 11135 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4744, 45, 46addsubd 11488 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((𝐴 + 𝑇) − 𝑥) = ((𝐴𝑥) + 𝑇))
4843, 47eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴𝑥) + 𝑇))
4948oveq1d 7356 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) + 𝑇) / 𝑇))
5044, 46subcld 11467 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℂ)
5150, 45, 45, 17divdird 11930 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) + 𝑇) / 𝑇) = (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)))
525, 29eqeltrid 2835 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
5352, 16dividd 11890 . . . . . . . . . . 11 (𝜑 → (𝑇 / 𝑇) = 1)
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑇 / 𝑇) = 1)
5554oveq2d 7357 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)) = (((𝐴𝑥) / 𝑇) + 1))
5649, 51, 553eqtrd 2770 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) / 𝑇) + 1))
5756fveq2d 6821 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
5857oveq1d 7356 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
5958, 21eqeltrrd 2832 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇) ∈ ℝ)
60 peano2re 11281 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
6125, 60syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
62 reflcl 13695 . . . . . . 7 ((((𝐴𝑥) / 𝑇) + 1) ∈ ℝ → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
6361, 62syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
646, 2posdifd 11699 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
6513, 64mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
6665, 10breqtrrd 5114 . . . . . . . 8 (𝜑 → 0 < 𝑇)
678, 66elrpd 12926 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
6867adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ+)
69 flltp1 13699 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7025, 69syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
71 1zzd 12498 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
72 fladdz 13724 . . . . . . . 8 ((((𝐴𝑥) / 𝑇) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7325, 71, 72syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7470, 73breqtrrd 5114 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
7525, 63, 68, 74ltmul1dd 12984 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) < ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
7626, 59, 1, 75ltadd2dd 11267 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) < (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
7750, 45, 17divcan1d 11893 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) = (𝐴𝑥))
7877oveq2d 7357 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐴𝑥)))
7946, 44pncan3d 11470 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐴𝑥)) = 𝐴)
8078, 79eqtrd 2766 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = 𝐴)
8158oveq2d 7357 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
8281eqcomd 2737 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8376, 80, 823brtr3d 5117 . . 3 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8418, 9remulcld 11137 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) ∈ ℝ)
85 flle 13698 . . . . . . 7 (((𝐵𝑥) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8618, 85syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8720, 18, 68lemul1d 12972 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇) ↔ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇)))
8886, 87mpbid 232 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇))
8921, 84, 1, 88leadd2dd 11727 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)))
904recnd 11135 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℂ)
9190, 45, 17divcan1d 11893 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) = (𝐵𝑥))
9291oveq2d 7357 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐵𝑥)))
9311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9446, 93pncan3d 11470 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐵𝑥)) = 𝐵)
9592, 94eqtrd 2766 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = 𝐵)
9689, 95breqtrd 5112 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)
9723rexrd 11157 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
98 elioc2 13304 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
9997, 3, 98syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
10022, 83, 96, 99mpbir3and 1343 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
101 fourierdlem4.e . 2 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
102100, 101fmptd 7042 1 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cz 12463  +crp 12885  (,]cioc 13241  cfl 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ioc 13245  df-fl 13691
This theorem is referenced by:  fourierdlem19  46164  fourierdlem37  46182  fourierdlem41  46186  fourierdlem48  46192  fourierdlem49  46193  fourierdlem51  46195  fourierdlem63  46207  fourierdlem65  46209  fourierdlem71  46215  fourierdlem79  46223  fourierdlem89  46233  fourierdlem90  46234  fourierdlem91  46235  fourierdlem102  46246  fourierdlem114  46258
  Copyright terms: Public domain W3C validator