Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem4 Structured version   Visualization version   GIF version

Theorem fourierdlem4 42753
Description: 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem4.a (𝜑𝐴 ∈ ℝ)
fourierdlem4.b (𝜑𝐵 ∈ ℝ)
fourierdlem4.altb (𝜑𝐴 < 𝐵)
fourierdlem4.t 𝑇 = (𝐵𝐴)
fourierdlem4.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem4 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem fourierdlem4
StepHypRef Expression
1 simpr 488 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2 fourierdlem4.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
32adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
43, 1resubcld 11057 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
5 fourierdlem4.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
6 fourierdlem4.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
72, 6resubcld 11057 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
85, 7eqeltrid 2894 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
98adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
105a1i 11 . . . . . . . . . 10 (𝜑𝑇 = (𝐵𝐴))
112recnd 10658 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
126recnd 10658 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
13 fourierdlem4.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
146, 13gtned 10764 . . . . . . . . . . 11 (𝜑𝐵𝐴)
1511, 12, 14subne0d 10995 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
1610, 15eqnetrd 3054 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
1716adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
184, 9, 17redivcld 11457 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
1918flcld 13163 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
2019zred 12075 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
2120, 9remulcld 10660 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221, 21readdcld 10659 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
236adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
2423, 1resubcld 11057 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℝ)
2524, 9, 17redivcld 11457 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) ∈ ℝ)
2625, 9remulcld 10660 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) ∈ ℝ)
2711addid1d 10829 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqcomd 2804 . . . . . . . . . . . . . 14 (𝜑𝐵 = (𝐵 + 0))
2911, 12subcld 10986 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029subidd 10974 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) − (𝐵𝐴)) = 0)
3130eqcomd 2804 . . . . . . . . . . . . . . 15 (𝜑 → 0 = ((𝐵𝐴) − (𝐵𝐴)))
3231oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 0) = (𝐵 + ((𝐵𝐴) − (𝐵𝐴))))
3311, 29, 29addsub12d 11009 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = ((𝐵𝐴) + (𝐵 − (𝐵𝐴))))
3411, 12nncand 10991 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3534oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + (𝐵 − (𝐵𝐴))) = ((𝐵𝐴) + 𝐴))
3629, 12addcomd 10831 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + (𝐵𝐴)))
3710eqcomd 2804 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) = 𝑇)
3837oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + (𝐵𝐴)) = (𝐴 + 𝑇))
3936, 38eqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + 𝑇))
4033, 35, 393eqtrd 2837 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = (𝐴 + 𝑇))
4128, 32, 403eqtrd 2837 . . . . . . . . . . . . 13 (𝜑𝐵 = (𝐴 + 𝑇))
4241adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐵 = (𝐴 + 𝑇))
4342oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴 + 𝑇) − 𝑥))
4412adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
459recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
461recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4744, 45, 46addsubd 11007 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((𝐴 + 𝑇) − 𝑥) = ((𝐴𝑥) + 𝑇))
4843, 47eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴𝑥) + 𝑇))
4948oveq1d 7150 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) + 𝑇) / 𝑇))
5044, 46subcld 10986 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℂ)
5150, 45, 45, 17divdird 11443 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) + 𝑇) / 𝑇) = (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)))
525, 29eqeltrid 2894 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
5352, 16dividd 11403 . . . . . . . . . . 11 (𝜑 → (𝑇 / 𝑇) = 1)
5453adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑇 / 𝑇) = 1)
5554oveq2d 7151 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)) = (((𝐴𝑥) / 𝑇) + 1))
5649, 51, 553eqtrd 2837 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) / 𝑇) + 1))
5756fveq2d 6649 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
5857oveq1d 7150 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
5958, 21eqeltrrd 2891 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇) ∈ ℝ)
60 peano2re 10802 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
6125, 60syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
62 reflcl 13161 . . . . . . 7 ((((𝐴𝑥) / 𝑇) + 1) ∈ ℝ → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
6361, 62syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
646, 2posdifd 11216 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
6513, 64mpbid 235 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
6665, 10breqtrrd 5058 . . . . . . . 8 (𝜑 → 0 < 𝑇)
678, 66elrpd 12416 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
6867adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ+)
69 flltp1 13165 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7025, 69syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
71 1zzd 12001 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
72 fladdz 13190 . . . . . . . 8 ((((𝐴𝑥) / 𝑇) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7325, 71, 72syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7470, 73breqtrrd 5058 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
7525, 63, 68, 74ltmul1dd 12474 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) < ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
7626, 59, 1, 75ltadd2dd 10788 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) < (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
7750, 45, 17divcan1d 11406 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) = (𝐴𝑥))
7877oveq2d 7151 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐴𝑥)))
7946, 44pncan3d 10989 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐴𝑥)) = 𝐴)
8078, 79eqtrd 2833 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = 𝐴)
8158oveq2d 7151 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
8281eqcomd 2804 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8376, 80, 823brtr3d 5061 . . 3 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8418, 9remulcld 10660 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) ∈ ℝ)
85 flle 13164 . . . . . . 7 (((𝐵𝑥) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8618, 85syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8720, 18, 68lemul1d 12462 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇) ↔ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇)))
8886, 87mpbid 235 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇))
8921, 84, 1, 88leadd2dd 11244 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)))
904recnd 10658 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℂ)
9190, 45, 17divcan1d 11406 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) = (𝐵𝑥))
9291oveq2d 7151 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐵𝑥)))
9311adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9446, 93pncan3d 10989 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐵𝑥)) = 𝐵)
9592, 94eqtrd 2833 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = 𝐵)
9689, 95breqtrd 5056 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)
9723rexrd 10680 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
98 elioc2 12788 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
9997, 3, 98syl2anc 587 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
10022, 83, 96, 99mpbir3and 1339 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
101 fourierdlem4.e . 2 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
102100, 101fmptd 6855 1 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cz 11969  +crp 12377  (,]cioc 12727  cfl 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioc 12731  df-fl 13157
This theorem is referenced by:  fourierdlem19  42768  fourierdlem37  42786  fourierdlem41  42790  fourierdlem48  42796  fourierdlem49  42797  fourierdlem51  42799  fourierdlem63  42811  fourierdlem65  42813  fourierdlem71  42819  fourierdlem79  42827  fourierdlem89  42837  fourierdlem90  42838  fourierdlem91  42839  fourierdlem102  42850  fourierdlem114  42862
  Copyright terms: Public domain W3C validator