Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem4 Structured version   Visualization version   GIF version

Theorem fourierdlem4 43652
Description: 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem4.a (𝜑𝐴 ∈ ℝ)
fourierdlem4.b (𝜑𝐵 ∈ ℝ)
fourierdlem4.altb (𝜑𝐴 < 𝐵)
fourierdlem4.t 𝑇 = (𝐵𝐴)
fourierdlem4.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
Assertion
Ref Expression
fourierdlem4 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem fourierdlem4
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2 fourierdlem4.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
32adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
43, 1resubcld 11403 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℝ)
5 fourierdlem4.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
6 fourierdlem4.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
72, 6resubcld 11403 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
85, 7eqeltrid 2843 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
98adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
105a1i 11 . . . . . . . . . 10 (𝜑𝑇 = (𝐵𝐴))
112recnd 11003 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
126recnd 11003 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
13 fourierdlem4.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
146, 13gtned 11110 . . . . . . . . . . 11 (𝜑𝐵𝐴)
1511, 12, 14subne0d 11341 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
1610, 15eqnetrd 3011 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
1716adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑇 ≠ 0)
184, 9, 17redivcld 11803 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) ∈ ℝ)
1918flcld 13518 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℤ)
2019zred 12426 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ∈ ℝ)
2120, 9remulcld 11005 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ ℝ)
221, 21readdcld 11004 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ)
236adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
2423, 1resubcld 11403 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℝ)
2524, 9, 17redivcld 11803 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) ∈ ℝ)
2625, 9remulcld 11005 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) ∈ ℝ)
2711addid1d 11175 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 0) = 𝐵)
2827eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑𝐵 = (𝐵 + 0))
2911, 12subcld 11332 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029subidd 11320 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) − (𝐵𝐴)) = 0)
3130eqcomd 2744 . . . . . . . . . . . . . . 15 (𝜑 → 0 = ((𝐵𝐴) − (𝐵𝐴)))
3231oveq2d 7291 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 0) = (𝐵 + ((𝐵𝐴) − (𝐵𝐴))))
3311, 29, 29addsub12d 11355 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = ((𝐵𝐴) + (𝐵 − (𝐵𝐴))))
3411, 12nncand 11337 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3534oveq2d 7291 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + (𝐵 − (𝐵𝐴))) = ((𝐵𝐴) + 𝐴))
3629, 12addcomd 11177 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + (𝐵𝐴)))
3710eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐴) = 𝑇)
3837oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + (𝐵𝐴)) = (𝐴 + 𝑇))
3936, 38eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵𝐴) + 𝐴) = (𝐴 + 𝑇))
4033, 35, 393eqtrd 2782 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + ((𝐵𝐴) − (𝐵𝐴))) = (𝐴 + 𝑇))
4128, 32, 403eqtrd 2782 . . . . . . . . . . . . 13 (𝜑𝐵 = (𝐴 + 𝑇))
4241adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐵 = (𝐴 + 𝑇))
4342oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴 + 𝑇) − 𝑥))
4412adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
459recnd 11003 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
461recnd 11003 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4744, 45, 46addsubd 11353 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → ((𝐴 + 𝑇) − 𝑥) = ((𝐴𝑥) + 𝑇))
4843, 47eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) = ((𝐴𝑥) + 𝑇))
4948oveq1d 7290 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) + 𝑇) / 𝑇))
5044, 46subcld 11332 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐴𝑥) ∈ ℂ)
5150, 45, 45, 17divdird 11789 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) + 𝑇) / 𝑇) = (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)))
525, 29eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
5352, 16dividd 11749 . . . . . . . . . . 11 (𝜑 → (𝑇 / 𝑇) = 1)
5453adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑇 / 𝑇) = 1)
5554oveq2d 7291 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + (𝑇 / 𝑇)) = (((𝐴𝑥) / 𝑇) + 1))
5649, 51, 553eqtrd 2782 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐵𝑥) / 𝑇) = (((𝐴𝑥) / 𝑇) + 1))
5756fveq2d 6778 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
5857oveq1d 7290 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
5958, 21eqeltrrd 2840 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇) ∈ ℝ)
60 peano2re 11148 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
6125, 60syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) + 1) ∈ ℝ)
62 reflcl 13516 . . . . . . 7 ((((𝐴𝑥) / 𝑇) + 1) ∈ ℝ → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
6361, 62syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) ∈ ℝ)
646, 2posdifd 11562 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
6513, 64mpbid 231 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
6665, 10breqtrrd 5102 . . . . . . . 8 (𝜑 → 0 < 𝑇)
678, 66elrpd 12769 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
6867adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℝ+)
69 flltp1 13520 . . . . . . . 8 (((𝐴𝑥) / 𝑇) ∈ ℝ → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7025, 69syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
71 1zzd 12351 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℤ)
72 fladdz 13545 . . . . . . . 8 ((((𝐴𝑥) / 𝑇) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7325, 71, 72syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (⌊‘(((𝐴𝑥) / 𝑇) + 1)) = ((⌊‘((𝐴𝑥) / 𝑇)) + 1))
7470, 73breqtrrd 5102 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐴𝑥) / 𝑇) < (⌊‘(((𝐴𝑥) / 𝑇) + 1)))
7525, 63, 68, 74ltmul1dd 12827 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) < ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇))
7626, 59, 1, 75ltadd2dd 11134 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) < (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
7750, 45, 17divcan1d 11752 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐴𝑥) / 𝑇) · 𝑇) = (𝐴𝑥))
7877oveq2d 7291 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐴𝑥)))
7946, 44pncan3d 11335 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐴𝑥)) = 𝐴)
8078, 79eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐴𝑥) / 𝑇) · 𝑇)) = 𝐴)
8158oveq2d 7291 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)))
8281eqcomd 2744 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘(((𝐴𝑥) / 𝑇) + 1)) · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8376, 80, 823brtr3d 5105 . . 3 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
8418, 9remulcld 11005 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) ∈ ℝ)
85 flle 13519 . . . . . . 7 (((𝐵𝑥) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8618, 85syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇))
8720, 18, 68lemul1d 12815 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) ≤ ((𝐵𝑥) / 𝑇) ↔ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇)))
8886, 87mpbid 231 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ≤ (((𝐵𝑥) / 𝑇) · 𝑇))
8921, 84, 1, 88leadd2dd 11590 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)))
904recnd 11003 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐵𝑥) ∈ ℂ)
9190, 45, 17divcan1d 11752 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (((𝐵𝑥) / 𝑇) · 𝑇) = (𝐵𝑥))
9291oveq2d 7291 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = (𝑥 + (𝐵𝑥)))
9311adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9446, 93pncan3d 11335 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (𝐵𝑥)) = 𝐵)
9592, 94eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥 + (((𝐵𝑥) / 𝑇) · 𝑇)) = 𝐵)
9689, 95breqtrd 5100 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)
9723rexrd 11025 . . . 4 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
98 elioc2 13142 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
9997, 3, 98syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵) ↔ ((𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ ℝ ∧ 𝐴 < (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∧ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ≤ 𝐵)))
10022, 83, 96, 99mpbir3and 1341 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) ∈ (𝐴(,]𝐵))
101 fourierdlem4.e . 2 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
102100, 101fmptd 6988 1 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cz 12319  +crp 12730  (,]cioc 13080  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioc 13084  df-fl 13512
This theorem is referenced by:  fourierdlem19  43667  fourierdlem37  43685  fourierdlem41  43689  fourierdlem48  43695  fourierdlem49  43696  fourierdlem51  43698  fourierdlem63  43710  fourierdlem65  43712  fourierdlem71  43718  fourierdlem79  43726  fourierdlem89  43736  fourierdlem90  43737  fourierdlem91  43738  fourierdlem102  43749  fourierdlem114  43761
  Copyright terms: Public domain W3C validator