| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsetfcdm | Structured version Visualization version GIF version | ||
| Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
| Ref | Expression |
|---|---|
| fsetfocdm.f | ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| fsetfocdm.s | ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) |
| Ref | Expression |
|---|---|
| fsetfcdm | ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑔 ∈ V | |
| 2 | feq1 6691 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
| 3 | fsetfocdm.f | . . . . 5 ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
| 4 | 1, 2, 3 | elab2 3666 | . . . 4 ⊢ (𝑔 ∈ 𝐹 ↔ 𝑔:𝐴⟶𝐵) |
| 5 | ffvelcdm 7076 | . . . . 5 ⊢ ((𝑔:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑔‘𝑋) ∈ 𝐵) | |
| 6 | 5 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑔:𝐴⟶𝐵 → (𝑔‘𝑋) ∈ 𝐵)) |
| 7 | 4, 6 | biimtrid 242 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑔 ∈ 𝐹 → (𝑔‘𝑋) ∈ 𝐵)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑔 ∈ 𝐹) → (𝑔‘𝑋) ∈ 𝐵) |
| 9 | fsetfocdm.s | . 2 ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) | |
| 10 | 8, 9 | fmptd 7109 | 1 ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: fsetfocdm 8880 |
| Copyright terms: Public domain | W3C validator |