MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfcdm Structured version   Visualization version   GIF version

Theorem fsetfcdm 8622
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfcdm (𝑋𝐴𝑆:𝐹𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐹(𝑓)   𝑋(𝑓)

Proof of Theorem fsetfcdm
StepHypRef Expression
1 vex 3434 . . . . 5 𝑔 ∈ V
2 feq1 6577 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
3 fsetfocdm.f . . . . 5 𝐹 = {𝑓𝑓:𝐴𝐵}
41, 2, 3elab2 3614 . . . 4 (𝑔𝐹𝑔:𝐴𝐵)
5 ffvelrn 6953 . . . . 5 ((𝑔:𝐴𝐵𝑋𝐴) → (𝑔𝑋) ∈ 𝐵)
65expcom 413 . . . 4 (𝑋𝐴 → (𝑔:𝐴𝐵 → (𝑔𝑋) ∈ 𝐵))
74, 6syl5bi 241 . . 3 (𝑋𝐴 → (𝑔𝐹 → (𝑔𝑋) ∈ 𝐵))
87imp 406 . 2 ((𝑋𝐴𝑔𝐹) → (𝑔𝑋) ∈ 𝐵)
9 fsetfocdm.s . 2 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
108, 9fmptd 6982 1 (𝑋𝐴𝑆:𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  {cab 2716  cmpt 5161  wf 6426  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438
This theorem is referenced by:  fsetfocdm  8623
  Copyright terms: Public domain W3C validator