MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfcdm Structured version   Visualization version   GIF version

Theorem fsetfcdm 8784
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfcdm (𝑋𝐴𝑆:𝐹𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐹(𝑓)   𝑋(𝑓)

Proof of Theorem fsetfcdm
StepHypRef Expression
1 vex 3440 . . . . 5 𝑔 ∈ V
2 feq1 6629 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
3 fsetfocdm.f . . . . 5 𝐹 = {𝑓𝑓:𝐴𝐵}
41, 2, 3elab2 3633 . . . 4 (𝑔𝐹𝑔:𝐴𝐵)
5 ffvelcdm 7014 . . . . 5 ((𝑔:𝐴𝐵𝑋𝐴) → (𝑔𝑋) ∈ 𝐵)
65expcom 413 . . . 4 (𝑋𝐴 → (𝑔:𝐴𝐵 → (𝑔𝑋) ∈ 𝐵))
74, 6biimtrid 242 . . 3 (𝑋𝐴 → (𝑔𝐹 → (𝑔𝑋) ∈ 𝐵))
87imp 406 . 2 ((𝑋𝐴𝑔𝐹) → (𝑔𝑋) ∈ 𝐵)
9 fsetfocdm.s . 2 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
108, 9fmptd 7047 1 (𝑋𝐴𝑆:𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cab 2709  cmpt 5170  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  fsetfocdm  8785
  Copyright terms: Public domain W3C validator