MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfcdm Structured version   Visualization version   GIF version

Theorem fsetfcdm 8787
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfcdm (𝑋𝐴𝑆:𝐹𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐹(𝑓)   𝑋(𝑓)

Proof of Theorem fsetfcdm
StepHypRef Expression
1 vex 3440 . . . . 5 𝑔 ∈ V
2 feq1 6630 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
3 fsetfocdm.f . . . . 5 𝐹 = {𝑓𝑓:𝐴𝐵}
41, 2, 3elab2 3638 . . . 4 (𝑔𝐹𝑔:𝐴𝐵)
5 ffvelcdm 7015 . . . . 5 ((𝑔:𝐴𝐵𝑋𝐴) → (𝑔𝑋) ∈ 𝐵)
65expcom 413 . . . 4 (𝑋𝐴 → (𝑔:𝐴𝐵 → (𝑔𝑋) ∈ 𝐵))
74, 6biimtrid 242 . . 3 (𝑋𝐴 → (𝑔𝐹 → (𝑔𝑋) ∈ 𝐵))
87imp 406 . 2 ((𝑋𝐴𝑔𝐹) → (𝑔𝑋) ∈ 𝐵)
9 fsetfocdm.s . 2 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
108, 9fmptd 7048 1 (𝑋𝐴𝑆:𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  cmpt 5173  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by:  fsetfocdm  8788
  Copyright terms: Public domain W3C validator