MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfcdm Structured version   Visualization version   GIF version

Theorem fsetfcdm 8918
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfcdm (𝑋𝐴𝑆:𝐹𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐹(𝑓)   𝑋(𝑓)

Proof of Theorem fsetfcdm
StepHypRef Expression
1 vex 3492 . . . . 5 𝑔 ∈ V
2 feq1 6728 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
3 fsetfocdm.f . . . . 5 𝐹 = {𝑓𝑓:𝐴𝐵}
41, 2, 3elab2 3698 . . . 4 (𝑔𝐹𝑔:𝐴𝐵)
5 ffvelcdm 7115 . . . . 5 ((𝑔:𝐴𝐵𝑋𝐴) → (𝑔𝑋) ∈ 𝐵)
65expcom 413 . . . 4 (𝑋𝐴 → (𝑔:𝐴𝐵 → (𝑔𝑋) ∈ 𝐵))
74, 6biimtrid 242 . . 3 (𝑋𝐴 → (𝑔𝐹 → (𝑔𝑋) ∈ 𝐵))
87imp 406 . 2 ((𝑋𝐴𝑔𝐹) → (𝑔𝑋) ∈ 𝐵)
9 fsetfocdm.s . 2 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
108, 9fmptd 7148 1 (𝑋𝐴𝑆:𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  cmpt 5249  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  fsetfocdm  8919
  Copyright terms: Public domain W3C validator