MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfcdm Structured version   Visualization version   GIF version

Theorem fsetfcdm 8833
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfcdm (𝑋𝐴𝑆:𝐹𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝐹(𝑓)   𝑋(𝑓)

Proof of Theorem fsetfcdm
StepHypRef Expression
1 vex 3451 . . . . 5 𝑔 ∈ V
2 feq1 6666 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴𝐵𝑔:𝐴𝐵))
3 fsetfocdm.f . . . . 5 𝐹 = {𝑓𝑓:𝐴𝐵}
41, 2, 3elab2 3649 . . . 4 (𝑔𝐹𝑔:𝐴𝐵)
5 ffvelcdm 7053 . . . . 5 ((𝑔:𝐴𝐵𝑋𝐴) → (𝑔𝑋) ∈ 𝐵)
65expcom 413 . . . 4 (𝑋𝐴 → (𝑔:𝐴𝐵 → (𝑔𝑋) ∈ 𝐵))
74, 6biimtrid 242 . . 3 (𝑋𝐴 → (𝑔𝐹 → (𝑔𝑋) ∈ 𝐵))
87imp 406 . 2 ((𝑋𝐴𝑔𝐹) → (𝑔𝑋) ∈ 𝐵)
9 fsetfocdm.s . 2 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
108, 9fmptd 7086 1 (𝑋𝐴𝑆:𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  cmpt 5188  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  fsetfocdm  8834
  Copyright terms: Public domain W3C validator