![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetfcdm | Structured version Visualization version GIF version |
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
Ref | Expression |
---|---|
fsetfocdm.f | ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
fsetfocdm.s | ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) |
Ref | Expression |
---|---|
fsetfcdm | ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3473 | . . . . 5 ⊢ 𝑔 ∈ V | |
2 | feq1 6697 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
3 | fsetfocdm.f | . . . . 5 ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
4 | 1, 2, 3 | elab2 3669 | . . . 4 ⊢ (𝑔 ∈ 𝐹 ↔ 𝑔:𝐴⟶𝐵) |
5 | ffvelcdm 7085 | . . . . 5 ⊢ ((𝑔:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑔‘𝑋) ∈ 𝐵) | |
6 | 5 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑔:𝐴⟶𝐵 → (𝑔‘𝑋) ∈ 𝐵)) |
7 | 4, 6 | biimtrid 241 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑔 ∈ 𝐹 → (𝑔‘𝑋) ∈ 𝐵)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑔 ∈ 𝐹) → (𝑔‘𝑋) ∈ 𝐵) |
9 | fsetfocdm.s | . 2 ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) | |
10 | 8, 9 | fmptd 7118 | 1 ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2704 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: fsetfocdm 8869 |
Copyright terms: Public domain | W3C validator |