Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetfcdm | Structured version Visualization version GIF version |
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
Ref | Expression |
---|---|
fsetfocdm.f | ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
fsetfocdm.s | ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) |
Ref | Expression |
---|---|
fsetfcdm | ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3434 | . . . . 5 ⊢ 𝑔 ∈ V | |
2 | feq1 6577 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶𝐵 ↔ 𝑔:𝐴⟶𝐵)) | |
3 | fsetfocdm.f | . . . . 5 ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
4 | 1, 2, 3 | elab2 3614 | . . . 4 ⊢ (𝑔 ∈ 𝐹 ↔ 𝑔:𝐴⟶𝐵) |
5 | ffvelrn 6953 | . . . . 5 ⊢ ((𝑔:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑔‘𝑋) ∈ 𝐵) | |
6 | 5 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑔:𝐴⟶𝐵 → (𝑔‘𝑋) ∈ 𝐵)) |
7 | 4, 6 | syl5bi 241 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑔 ∈ 𝐹 → (𝑔‘𝑋) ∈ 𝐵)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑔 ∈ 𝐹) → (𝑔‘𝑋) ∈ 𝐵) |
9 | fsetfocdm.s | . 2 ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) | |
10 | 8, 9 | fmptd 6982 | 1 ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 {cab 2716 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 |
This theorem is referenced by: fsetfocdm 8623 |
Copyright terms: Public domain | W3C validator |