Step | Hyp | Ref
| Expression |
1 | | fsetfocdm.f |
. . . 4
⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
2 | | fsetfocdm.s |
. . . 4
⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) |
3 | 1, 2 | fsetfcdm 8918 |
. . 3
⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) |
4 | 3 | adantl 481 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → 𝑆:𝐹⟶𝐵) |
5 | | simplr 768 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑔 ∈ 𝐵) |
6 | 5 | fmpttd 7149 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑔):𝐴⟶𝐵) |
7 | | simpll 766 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝐴 ∈ 𝑉) |
8 | 7 | mptexd 7261 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑔) ∈ V) |
9 | | feq1 6728 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝑔) → (𝑓:𝐴⟶𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝑔):𝐴⟶𝐵)) |
10 | 9, 1 | elab2g 3696 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ 𝑔) ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝑔) ∈ 𝐹 ↔ (𝑥 ∈ 𝐴 ↦ 𝑔):𝐴⟶𝐵)) |
11 | 8, 10 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑔) ∈ 𝐹 ↔ (𝑥 ∈ 𝐴 ↦ 𝑔):𝐴⟶𝐵)) |
12 | 6, 11 | mpbird 257 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝑔) ∈ 𝐹) |
13 | | fveq1 6919 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → (𝑔‘𝑋) = (𝑓‘𝑋)) |
14 | 13 | cbvmptv 5279 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) = (𝑓 ∈ 𝐹 ↦ (𝑓‘𝑋)) |
15 | 2, 14 | eqtri 2768 |
. . . . . . 7
⊢ 𝑆 = (𝑓 ∈ 𝐹 ↦ (𝑓‘𝑋)) |
16 | | fveq1 6919 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ 𝑔) → (𝑓‘𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑔)‘𝑋)) |
17 | | fvexd 6935 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑔)‘𝑋) ∈ V) |
18 | 15, 16, 12, 17 | fvmptd3 7052 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑆‘(𝑥 ∈ 𝐴 ↦ 𝑔)) = ((𝑥 ∈ 𝐴 ↦ 𝑔)‘𝑋)) |
19 | | eqidd 2741 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → 𝑔 = 𝑔) |
20 | | eqid 2740 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ 𝑔) = (𝑥 ∈ 𝐴 ↦ 𝑔) |
21 | | vex 3492 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
22 | 19, 20, 21 | fvmpt 7029 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝑔)‘𝑋) = 𝑔) |
23 | 22 | ad2antlr 726 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑔)‘𝑋) = 𝑔) |
24 | 18, 23 | eqtrd 2780 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑆‘(𝑥 ∈ 𝐴 ↦ 𝑔)) = 𝑔) |
25 | | fveq2 6920 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 𝑔) → (𝑆‘ℎ) = (𝑆‘(𝑥 ∈ 𝐴 ↦ 𝑔))) |
26 | 25 | eqcomd 2746 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ 𝐴 ↦ 𝑔) → (𝑆‘(𝑥 ∈ 𝐴 ↦ 𝑔)) = (𝑆‘ℎ)) |
27 | 24, 26 | sylan9req 2801 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) ∧ ℎ = (𝑥 ∈ 𝐴 ↦ 𝑔)) → 𝑔 = (𝑆‘ℎ)) |
28 | 12, 27 | rspcedeq2vd 3643 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ∃ℎ ∈ 𝐹 𝑔 = (𝑆‘ℎ)) |
29 | 28 | ralrimiva 3152 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ∀𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐹 𝑔 = (𝑆‘ℎ)) |
30 | | dffo3 7136 |
. 2
⊢ (𝑆:𝐹–onto→𝐵 ↔ (𝑆:𝐹⟶𝐵 ∧ ∀𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐹 𝑔 = (𝑆‘ℎ))) |
31 | 4, 29, 30 | sylanbrc 582 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → 𝑆:𝐹–onto→𝐵) |