MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfocdm Structured version   Visualization version   GIF version

Theorem fsetfocdm 8456
Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfocdm ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋   𝑓,𝐹   𝑆,𝑔   𝑓,𝑉,𝑔   𝑓,𝑋
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsetfocdm
Dummy variables 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetfocdm.f . . . 4 𝐹 = {𝑓𝑓:𝐴𝐵}
2 fsetfocdm.s . . . 4 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
31, 2fsetfcdm 8455 . . 3 (𝑋𝐴𝑆:𝐹𝐵)
43adantl 485 . 2 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹𝐵)
5 simplr 768 . . . . . 6 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ 𝑥𝐴) → 𝑔𝐵)
6 eqid 2758 . . . . . 6 (𝑥𝐴𝑔) = (𝑥𝐴𝑔)
75, 6fmptd 6875 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔):𝐴𝐵)
8 simpll 766 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝐴𝑉)
98mptexd 6984 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ V)
10 feq1 6484 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴𝑔):𝐴𝐵))
1110, 1elab2g 3591 . . . . . 6 ((𝑥𝐴𝑔) ∈ V → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
129, 11syl 17 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
137, 12mpbird 260 . . . 4 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ 𝐹)
14 fveq2 6663 . . . . . 6 ( = (𝑥𝐴𝑔) → (𝑆) = (𝑆‘(𝑥𝐴𝑔)))
1514eqeq2d 2769 . . . . 5 ( = (𝑥𝐴𝑔) → (𝑔 = (𝑆) ↔ 𝑔 = (𝑆‘(𝑥𝐴𝑔))))
1615adantl 485 . . . 4 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ = (𝑥𝐴𝑔)) → (𝑔 = (𝑆) ↔ 𝑔 = (𝑆‘(𝑥𝐴𝑔))))
17 fveq1 6662 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑋) = (𝑓𝑋))
1817cbvmptv 5139 . . . . . . . 8 (𝑔𝐹 ↦ (𝑔𝑋)) = (𝑓𝐹 ↦ (𝑓𝑋))
192, 18eqtri 2781 . . . . . . 7 𝑆 = (𝑓𝐹 ↦ (𝑓𝑋))
2019a1i 11 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝑆 = (𝑓𝐹 ↦ (𝑓𝑋)))
21 fveq1 6662 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓𝑋) = ((𝑥𝐴𝑔)‘𝑋))
2221adantl 485 . . . . . 6 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ 𝑓 = (𝑥𝐴𝑔)) → (𝑓𝑋) = ((𝑥𝐴𝑔)‘𝑋))
23 fvexd 6678 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) ∈ V)
2420, 22, 13, 23fvmptd 6771 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑆‘(𝑥𝐴𝑔)) = ((𝑥𝐴𝑔)‘𝑋))
25 eqidd 2759 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → (𝑥𝐴𝑔) = (𝑥𝐴𝑔))
26 eqidd 2759 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑥 = 𝑋) → 𝑔 = 𝑔)
27 simpr 488 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → 𝑋𝐴)
28 vex 3413 . . . . . . . 8 𝑔 ∈ V
2928a1i 11 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → 𝑔 ∈ V)
3025, 26, 27, 29fvmptd 6771 . . . . . 6 ((𝐴𝑉𝑋𝐴) → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
3130adantr 484 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
3224, 31eqtr2d 2794 . . . 4 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝑔 = (𝑆‘(𝑥𝐴𝑔)))
3313, 16, 32rspcedvd 3546 . . 3 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ∃𝐹 𝑔 = (𝑆))
3433ralrimiva 3113 . 2 ((𝐴𝑉𝑋𝐴) → ∀𝑔𝐵𝐹 𝑔 = (𝑆))
35 dffo3 6865 . 2 (𝑆:𝐹onto𝐵 ↔ (𝑆:𝐹𝐵 ∧ ∀𝑔𝐵𝐹 𝑔 = (𝑆)))
364, 34, 35sylanbrc 586 1 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  Vcvv 3409  cmpt 5116  wf 6336  ontowfo 6338  cfv 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348
This theorem is referenced by:  fsetprcnex  8457
  Copyright terms: Public domain W3C validator