MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfocdm Structured version   Visualization version   GIF version

Theorem fsetfocdm 8880
Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfocdm ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋   𝑓,𝐹   𝑆,𝑔   𝑓,𝑉,𝑔   𝑓,𝑋
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsetfocdm
Dummy variables 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetfocdm.f . . . 4 𝐹 = {𝑓𝑓:𝐴𝐵}
2 fsetfocdm.s . . . 4 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
31, 2fsetfcdm 8879 . . 3 (𝑋𝐴𝑆:𝐹𝐵)
43adantl 481 . 2 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹𝐵)
5 simplr 768 . . . . . 6 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ 𝑥𝐴) → 𝑔𝐵)
65fmpttd 7110 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔):𝐴𝐵)
7 simpll 766 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝐴𝑉)
87mptexd 7221 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ V)
9 feq1 6691 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴𝑔):𝐴𝐵))
109, 1elab2g 3664 . . . . . 6 ((𝑥𝐴𝑔) ∈ V → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
118, 10syl 17 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
126, 11mpbird 257 . . . 4 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ 𝐹)
13 fveq1 6880 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑋) = (𝑓𝑋))
1413cbvmptv 5230 . . . . . . . 8 (𝑔𝐹 ↦ (𝑔𝑋)) = (𝑓𝐹 ↦ (𝑓𝑋))
152, 14eqtri 2759 . . . . . . 7 𝑆 = (𝑓𝐹 ↦ (𝑓𝑋))
16 fveq1 6880 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓𝑋) = ((𝑥𝐴𝑔)‘𝑋))
17 fvexd 6896 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) ∈ V)
1815, 16, 12, 17fvmptd3 7014 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑆‘(𝑥𝐴𝑔)) = ((𝑥𝐴𝑔)‘𝑋))
19 eqidd 2737 . . . . . . . 8 (𝑥 = 𝑋𝑔 = 𝑔)
20 eqid 2736 . . . . . . . 8 (𝑥𝐴𝑔) = (𝑥𝐴𝑔)
21 vex 3468 . . . . . . . 8 𝑔 ∈ V
2219, 20, 21fvmpt 6991 . . . . . . 7 (𝑋𝐴 → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
2322ad2antlr 727 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
2418, 23eqtrd 2771 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑆‘(𝑥𝐴𝑔)) = 𝑔)
25 fveq2 6881 . . . . . 6 ( = (𝑥𝐴𝑔) → (𝑆) = (𝑆‘(𝑥𝐴𝑔)))
2625eqcomd 2742 . . . . 5 ( = (𝑥𝐴𝑔) → (𝑆‘(𝑥𝐴𝑔)) = (𝑆))
2724, 26sylan9req 2792 . . . 4 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ = (𝑥𝐴𝑔)) → 𝑔 = (𝑆))
2812, 27rspcedeq2vd 3614 . . 3 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ∃𝐹 𝑔 = (𝑆))
2928ralrimiva 3133 . 2 ((𝐴𝑉𝑋𝐴) → ∀𝑔𝐵𝐹 𝑔 = (𝑆))
30 dffo3 7097 . 2 (𝑆:𝐹onto𝐵 ↔ (𝑆:𝐹𝐵 ∧ ∀𝑔𝐵𝐹 𝑔 = (𝑆)))
314, 29, 30sylanbrc 583 1 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cmpt 5206  wf 6532  ontowfo 6534  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  fsetprcnex  8881
  Copyright terms: Public domain W3C validator