MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetfocdm Structured version   Visualization version   GIF version

Theorem fsetfocdm 8649
Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.)
Hypotheses
Ref Expression
fsetfocdm.f 𝐹 = {𝑓𝑓:𝐴𝐵}
fsetfocdm.s 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
Assertion
Ref Expression
fsetfocdm ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑔,𝐹   𝑔,𝑋   𝑓,𝐹   𝑆,𝑔   𝑓,𝑉,𝑔   𝑓,𝑋
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsetfocdm
Dummy variables 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsetfocdm.f . . . 4 𝐹 = {𝑓𝑓:𝐴𝐵}
2 fsetfocdm.s . . . 4 𝑆 = (𝑔𝐹 ↦ (𝑔𝑋))
31, 2fsetfcdm 8648 . . 3 (𝑋𝐴𝑆:𝐹𝐵)
43adantl 482 . 2 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹𝐵)
5 simplr 766 . . . . . 6 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ 𝑥𝐴) → 𝑔𝐵)
6 eqid 2738 . . . . . 6 (𝑥𝐴𝑔) = (𝑥𝐴𝑔)
75, 6fmptd 6988 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔):𝐴𝐵)
8 simpll 764 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝐴𝑉)
98mptexd 7100 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ V)
10 feq1 6581 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴𝑔):𝐴𝐵))
1110, 1elab2g 3611 . . . . . 6 ((𝑥𝐴𝑔) ∈ V → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
129, 11syl 17 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔) ∈ 𝐹 ↔ (𝑥𝐴𝑔):𝐴𝐵))
137, 12mpbird 256 . . . 4 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑥𝐴𝑔) ∈ 𝐹)
14 fveq2 6774 . . . . . 6 ( = (𝑥𝐴𝑔) → (𝑆) = (𝑆‘(𝑥𝐴𝑔)))
1514eqeq2d 2749 . . . . 5 ( = (𝑥𝐴𝑔) → (𝑔 = (𝑆) ↔ 𝑔 = (𝑆‘(𝑥𝐴𝑔))))
1615adantl 482 . . . 4 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ = (𝑥𝐴𝑔)) → (𝑔 = (𝑆) ↔ 𝑔 = (𝑆‘(𝑥𝐴𝑔))))
17 fveq1 6773 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑋) = (𝑓𝑋))
1817cbvmptv 5187 . . . . . . . 8 (𝑔𝐹 ↦ (𝑔𝑋)) = (𝑓𝐹 ↦ (𝑓𝑋))
192, 18eqtri 2766 . . . . . . 7 𝑆 = (𝑓𝐹 ↦ (𝑓𝑋))
2019a1i 11 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝑆 = (𝑓𝐹 ↦ (𝑓𝑋)))
21 fveq1 6773 . . . . . . 7 (𝑓 = (𝑥𝐴𝑔) → (𝑓𝑋) = ((𝑥𝐴𝑔)‘𝑋))
2221adantl 482 . . . . . 6 ((((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) ∧ 𝑓 = (𝑥𝐴𝑔)) → (𝑓𝑋) = ((𝑥𝐴𝑔)‘𝑋))
23 fvexd 6789 . . . . . 6 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) ∈ V)
2420, 22, 13, 23fvmptd 6882 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → (𝑆‘(𝑥𝐴𝑔)) = ((𝑥𝐴𝑔)‘𝑋))
25 eqidd 2739 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → (𝑥𝐴𝑔) = (𝑥𝐴𝑔))
26 eqidd 2739 . . . . . . 7 (((𝐴𝑉𝑋𝐴) ∧ 𝑥 = 𝑋) → 𝑔 = 𝑔)
27 simpr 485 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → 𝑋𝐴)
28 vex 3436 . . . . . . . 8 𝑔 ∈ V
2928a1i 11 . . . . . . 7 ((𝐴𝑉𝑋𝐴) → 𝑔 ∈ V)
3025, 26, 27, 29fvmptd 6882 . . . . . 6 ((𝐴𝑉𝑋𝐴) → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
3130adantr 481 . . . . 5 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ((𝑥𝐴𝑔)‘𝑋) = 𝑔)
3224, 31eqtr2d 2779 . . . 4 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → 𝑔 = (𝑆‘(𝑥𝐴𝑔)))
3313, 16, 32rspcedvd 3563 . . 3 (((𝐴𝑉𝑋𝐴) ∧ 𝑔𝐵) → ∃𝐹 𝑔 = (𝑆))
3433ralrimiva 3103 . 2 ((𝐴𝑉𝑋𝐴) → ∀𝑔𝐵𝐹 𝑔 = (𝑆))
35 dffo3 6978 . 2 (𝑆:𝐹onto𝐵 ↔ (𝑆:𝐹𝐵 ∧ ∀𝑔𝐵𝐹 𝑔 = (𝑆)))
364, 34, 35sylanbrc 583 1 ((𝐴𝑉𝑋𝐴) → 𝑆:𝐹onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432  cmpt 5157  wf 6429  ontowfo 6431  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fsetprcnex  8650
  Copyright terms: Public domain W3C validator