MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1p1m1 Structured version   Visualization version   GIF version

Theorem fseq1p1m1 13571
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
Assertion
Ref Expression
fseq1p1m1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 1191 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹:(1...𝑁)⟶𝐴)
2 nn0p1nn 12507 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝑁 + 1) ∈ ℕ)
4 simpr2 1192 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐵𝐴)
5 fseq1p1m1.1 . . . . . . . . 9 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
6 fsng 7127 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}))
75, 6mpbiri 258 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
83, 4, 7syl2anc 583 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
94snssd 4804 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → {𝐵} ⊆ 𝐴)
108, 9fssd 6725 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴)
11 fzp1disj 13556 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
131, 10, 12fun2d 6745 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴)
14 1z 12588 . . . . . . . 8 1 ∈ ℤ
15 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ ℕ0)
16 nn0uz 12860 . . . . . . . . . 10 0 = (ℤ‘0)
17 1m1e0 12280 . . . . . . . . . . 11 (1 − 1) = 0
1817fveq2i 6884 . . . . . . . . . 10 (ℤ‘(1 − 1)) = (ℤ‘0)
1916, 18eqtr4i 2755 . . . . . . . . 9 0 = (ℤ‘(1 − 1))
2015, 19eleqtrdi 2835 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ (ℤ‘(1 − 1)))
21 fzsuc2 13555 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2214, 20, 21sylancr 586 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2322eqcomd 2730 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
2423feq2d 6693 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2513, 24mpbid 231 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴)
26 simpr3 1193 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺 = (𝐹𝐻))
2726feq1d 6692 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2825, 27mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
29 ovex 7434 . . . . . 6 (𝑁 + 1) ∈ V
3029snid 4656 . . . . 5 (𝑁 + 1) ∈ {(𝑁 + 1)}
31 fvres 6900 . . . . 5 ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)))
3230, 31ax-mp 5 . . . 4 ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))
3326reseq1d 5970 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹𝐻) ↾ {(𝑁 + 1)}))
34 ffn 6707 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶𝐴𝐹 Fn (1...𝑁))
35 fnresdisj 6660 . . . . . . . . . . 11 (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
361, 34, 353syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
3712, 36mpbid 231 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅)
3837uneq1d 4154 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})))
39 resundir 5986 . . . . . . . 8 ((𝐹𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)}))
40 uncom 4145 . . . . . . . . 9 (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅)
41 un0 4382 . . . . . . . . 9 ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)})
4240, 41eqtr2i 2753 . . . . . . . 8 (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))
4338, 39, 423eqtr4g 2789 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)}))
44 ffn 6707 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶𝐴𝐻 Fn {(𝑁 + 1)})
45 fnresdm 6659 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4610, 44, 453syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4733, 43, 463eqtrd 2768 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻)
4847fveq1d 6883 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1)))
495fveq1i 6882 . . . . . . 7 (𝐻‘(𝑁 + 1)) = ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1))
50 fvsng 7170 . . . . . . 7 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1)) = 𝐵)
5149, 50eqtrid 2776 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵)
523, 4, 51syl2anc 583 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵)
5348, 52eqtrd 2764 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = 𝐵)
5432, 53eqtr3id 2778 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵)
5526reseq1d 5970 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹𝐻) ↾ (1...𝑁)))
56 incom 4193 . . . . . . . 8 ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)})
5756, 12eqtrid 2776 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅)
58 ffn 6707 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)})
59 fnresdisj 6660 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
608, 58, 593syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
6157, 60mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅)
6261uneq2d 4155 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅))
63 resundir 5986 . . . . 5 ((𝐹𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁)))
64 un0 4382 . . . . . 6 ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁))
6564eqcomi 2733 . . . . 5 (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)
6662, 63, 653eqtr4g 2789 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁)))
67 fnresdm 6659 . . . . 5 (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹)
681, 34, 673syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹)
6955, 66, 683eqtrrd 2769 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7028, 54, 693jca 1125 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁))))
71 simpr1 1191 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
72 fzssp1 13540 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
73 fssres 6747 . . . . 5 ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
7471, 72, 73sylancl 585 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
75 simpr3 1193 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7675feq1d 6692 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴))
7774, 76mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴)
78 simpr2 1192 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵)
792adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ)
80 nnuz 12861 . . . . . . 7 ℕ = (ℤ‘1)
8179, 80eleqtrdi 2835 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (ℤ‘1))
82 eluzfz2 13505 . . . . . 6 ((𝑁 + 1) ∈ (ℤ‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8381, 82syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8471, 83ffvelcdmd 7077 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴)
8578, 84eqeltrrd 2826 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵𝐴)
86 ffn 6707 . . . . . . . . 9 (𝐺:(1...(𝑁 + 1))⟶𝐴𝐺 Fn (1...(𝑁 + 1)))
8771, 86syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1)))
88 fnressn 7148 . . . . . . . 8 ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
8987, 83, 88syl2anc 583 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
90 opeq2 4866 . . . . . . . . 9 ((𝐺‘(𝑁 + 1)) = 𝐵 → ⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩ = ⟨(𝑁 + 1), 𝐵⟩)
9190sneqd 4632 . . . . . . . 8 ((𝐺‘(𝑁 + 1)) = 𝐵 → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9278, 91syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9389, 92eqtrd 2764 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), 𝐵⟩})
945, 93eqtr4id 2783 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)}))
9575, 94uneq12d 4156 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})))
96 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
9796, 19eleqtrdi 2835 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ‘(1 − 1)))
9814, 97, 21sylancr 586 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
9998reseq2d 5971 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})))
100 resundi 5985 . . . . 5 (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))
10199, 100eqtr2di 2781 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1))))
102 fnresdm 6659 . . . . 5 (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10371, 86, 1023syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10495, 101, 1033eqtrrd 2769 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹𝐻))
10577, 85, 1043jca 1125 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)))
10670, 105impbida 798 1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cun 3938  cin 3939  wss 3940  c0 4314  {csn 4620  cop 4626  cres 5668   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  0cc0 11105  1c1 11106   + caddc 11108  cmin 11440  cn 12208  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  fseq1m1p1  13572
  Copyright terms: Public domain W3C validator