Proof of Theorem fseq1p1m1
Step | Hyp | Ref
| Expression |
1 | | simpr1 1192 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹:(1...𝑁)⟶𝐴) |
2 | | nn0p1nn 11987 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
3 | 2 | adantr 484 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝑁 + 1) ∈ ℕ) |
4 | | simpr2 1193 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐵 ∈ 𝐴) |
5 | | fseq1p1m1.1 |
. . . . . . . . 9
⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} |
6 | | fsng 6897 |
. . . . . . . . 9
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {〈(𝑁 + 1), 𝐵〉})) |
7 | 5, 6 | mpbiri 261 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
8 | 3, 4, 7 | syl2anc 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
9 | 4 | snssd 4703 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → {𝐵} ⊆ 𝐴) |
10 | 8, 9 | fssd 6519 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴) |
11 | | fzp1disj 13029 |
. . . . . . 7
⊢
((1...𝑁) ∩
{(𝑁 + 1)}) =
∅ |
12 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
13 | 1, 10, 12 | fun2d 6533 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴) |
14 | | 1z 12065 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
15 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈
ℕ0) |
16 | | nn0uz 12334 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
17 | | 1m1e0 11760 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
18 | 17 | fveq2i 6667 |
. . . . . . . . . 10
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
19 | 16, 18 | eqtr4i 2785 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
20 | 15, 19 | eleqtrdi 2863 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
21 | | fzsuc2 13028 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ 𝑁
∈ (ℤ≥‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
22 | 14, 20, 21 | sylancr 590 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
23 | 22 | eqcomd 2765 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1))) |
24 | 23 | feq2d 6490 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
25 | 13, 24 | mpbid 235 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴) |
26 | | simpr3 1194 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺 = (𝐹 ∪ 𝐻)) |
27 | 26 | feq1d 6489 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
28 | 25, 27 | mpbird 260 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
29 | | ovex 7190 |
. . . . . 6
⊢ (𝑁 + 1) ∈ V |
30 | 29 | snid 4562 |
. . . . 5
⊢ (𝑁 + 1) ∈ {(𝑁 + 1)} |
31 | | fvres 6683 |
. . . . 5
⊢ ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
32 | 30, 31 | ax-mp 5 |
. . . 4
⊢ ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)) |
33 | 26 | reseq1d 5828 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)})) |
34 | | ffn 6504 |
. . . . . . . . . . 11
⊢ (𝐹:(1...𝑁)⟶𝐴 → 𝐹 Fn (1...𝑁)) |
35 | | fnresdisj 6456 |
. . . . . . . . . . 11
⊢ (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
36 | 1, 34, 35 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
37 | 12, 36 | mpbid 235 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅) |
38 | 37 | uneq1d 4070 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))) |
39 | | resundir 5844 |
. . . . . . . 8
⊢ ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) |
40 | | uncom 4061 |
. . . . . . . . 9
⊢ (∅
∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) |
41 | | un0 4290 |
. . . . . . . . 9
⊢ ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)}) |
42 | 40, 41 | eqtr2i 2783 |
. . . . . . . 8
⊢ (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) |
43 | 38, 39, 42 | 3eqtr4g 2819 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)})) |
44 | | ffn 6504 |
. . . . . . . 8
⊢ (𝐻:{(𝑁 + 1)}⟶𝐴 → 𝐻 Fn {(𝑁 + 1)}) |
45 | | fnresdm 6455 |
. . . . . . . 8
⊢ (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
46 | 10, 44, 45 | 3syl 18 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
47 | 33, 43, 46 | 3eqtrd 2798 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻) |
48 | 47 | fveq1d 6666 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1))) |
49 | 5 | fveq1i 6665 |
. . . . . . 7
⊢ (𝐻‘(𝑁 + 1)) = ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) |
50 | | fvsng 6940 |
. . . . . . 7
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) = 𝐵) |
51 | 49, 50 | syl5eq 2806 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵) |
52 | 3, 4, 51 | syl2anc 587 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵) |
53 | 48, 52 | eqtrd 2794 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = 𝐵) |
54 | 32, 53 | eqtr3id 2808 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
55 | 26 | reseq1d 5828 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹 ∪ 𝐻) ↾ (1...𝑁))) |
56 | | incom 4109 |
. . . . . . . 8
⊢ ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
57 | 56, 12 | syl5eq 2806 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅) |
58 | | ffn 6504 |
. . . . . . . 8
⊢ (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)}) |
59 | | fnresdisj 6456 |
. . . . . . . 8
⊢ (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
60 | 8, 58, 59 | 3syl 18 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
61 | 57, 60 | mpbid 235 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅) |
62 | 61 | uneq2d 4071 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)) |
63 | | resundir 5844 |
. . . . 5
⊢ ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) |
64 | | un0 4290 |
. . . . . 6
⊢ ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁)) |
65 | 64 | eqcomi 2768 |
. . . . 5
⊢ (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅) |
66 | 62, 63, 65 | 3eqtr4g 2819 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁))) |
67 | | fnresdm 6455 |
. . . . 5
⊢ (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
68 | 1, 34, 67 | 3syl 18 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
69 | 55, 66, 68 | 3eqtrrd 2799 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
70 | 28, 54, 69 | 3jca 1126 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) |
71 | | simpr1 1192 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
72 | | fzssp1 13013 |
. . . . 5
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
73 | | fssres 6535 |
. . . . 5
⊢ ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
74 | 71, 72, 73 | sylancl 589 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
75 | | simpr3 1194 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
76 | 75 | feq1d 6489 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)) |
77 | 74, 76 | mpbird 260 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴) |
78 | | simpr2 1193 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
79 | 2 | adantr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ) |
80 | | nnuz 12335 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
81 | 79, 80 | eleqtrdi 2863 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈
(ℤ≥‘1)) |
82 | | eluzfz2 12978 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
83 | 81, 82 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
84 | 71, 83 | ffvelrnd 6850 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴) |
85 | 78, 84 | eqeltrrd 2854 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵 ∈ 𝐴) |
86 | | ffn 6504 |
. . . . . . . . 9
⊢ (𝐺:(1...(𝑁 + 1))⟶𝐴 → 𝐺 Fn (1...(𝑁 + 1))) |
87 | 71, 86 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1))) |
88 | | fnressn 6918 |
. . . . . . . 8
⊢ ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
89 | 87, 83, 88 | syl2anc 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
90 | | opeq2 4767 |
. . . . . . . . 9
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → 〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉 = 〈(𝑁 + 1), 𝐵〉) |
91 | 90 | sneqd 4538 |
. . . . . . . 8
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
92 | 78, 91 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
93 | 89, 92 | eqtrd 2794 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), 𝐵〉}) |
94 | 5, 93 | eqtr4id 2813 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)})) |
95 | 75, 94 | uneq12d 4072 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹 ∪ 𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))) |
96 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈
ℕ0) |
97 | 96, 19 | eleqtrdi 2863 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
98 | 14, 97, 21 | sylancr 590 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
99 | 98 | reseq2d 5829 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)}))) |
100 | | resundi 5843 |
. . . . 5
⊢ (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) |
101 | 99, 100 | eqtr2di 2811 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1)))) |
102 | | fnresdm 6455 |
. . . . 5
⊢ (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
103 | 71, 86, 102 | 3syl 18 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
104 | 95, 101, 103 | 3eqtrrd 2799 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹 ∪ 𝐻)) |
105 | 77, 85, 104 | 3jca 1126 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) |
106 | 70, 105 | impbida 800 |
1
⊢ (𝑁 ∈ ℕ0
→ ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) |