MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1p1m1 Structured version   Visualization version   GIF version

Theorem fseq1p1m1 13516
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
Assertion
Ref Expression
fseq1p1m1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 1195 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹:(1...𝑁)⟶𝐴)
2 nn0p1nn 12453 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantr 482 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝑁 + 1) ∈ ℕ)
4 simpr2 1196 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐵𝐴)
5 fseq1p1m1.1 . . . . . . . . 9 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
6 fsng 7084 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}))
75, 6mpbiri 258 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
83, 4, 7syl2anc 585 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
94snssd 4770 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → {𝐵} ⊆ 𝐴)
108, 9fssd 6687 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴)
11 fzp1disj 13501 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
131, 10, 12fun2d 6707 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴)
14 1z 12534 . . . . . . . 8 1 ∈ ℤ
15 simpl 484 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ ℕ0)
16 nn0uz 12806 . . . . . . . . . 10 0 = (ℤ‘0)
17 1m1e0 12226 . . . . . . . . . . 11 (1 − 1) = 0
1817fveq2i 6846 . . . . . . . . . 10 (ℤ‘(1 − 1)) = (ℤ‘0)
1916, 18eqtr4i 2768 . . . . . . . . 9 0 = (ℤ‘(1 − 1))
2015, 19eleqtrdi 2848 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ (ℤ‘(1 − 1)))
21 fzsuc2 13500 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2214, 20, 21sylancr 588 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2322eqcomd 2743 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
2423feq2d 6655 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2513, 24mpbid 231 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴)
26 simpr3 1197 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺 = (𝐹𝐻))
2726feq1d 6654 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2825, 27mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
29 ovex 7391 . . . . . 6 (𝑁 + 1) ∈ V
3029snid 4623 . . . . 5 (𝑁 + 1) ∈ {(𝑁 + 1)}
31 fvres 6862 . . . . 5 ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)))
3230, 31ax-mp 5 . . . 4 ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))
3326reseq1d 5937 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹𝐻) ↾ {(𝑁 + 1)}))
34 ffn 6669 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶𝐴𝐹 Fn (1...𝑁))
35 fnresdisj 6622 . . . . . . . . . . 11 (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
361, 34, 353syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
3712, 36mpbid 231 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅)
3837uneq1d 4123 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})))
39 resundir 5953 . . . . . . . 8 ((𝐹𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)}))
40 uncom 4114 . . . . . . . . 9 (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅)
41 un0 4351 . . . . . . . . 9 ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)})
4240, 41eqtr2i 2766 . . . . . . . 8 (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))
4338, 39, 423eqtr4g 2802 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)}))
44 ffn 6669 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶𝐴𝐻 Fn {(𝑁 + 1)})
45 fnresdm 6621 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4610, 44, 453syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4733, 43, 463eqtrd 2781 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻)
4847fveq1d 6845 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1)))
495fveq1i 6844 . . . . . . 7 (𝐻‘(𝑁 + 1)) = ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1))
50 fvsng 7127 . . . . . . 7 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1)) = 𝐵)
5149, 50eqtrid 2789 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵)
523, 4, 51syl2anc 585 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵)
5348, 52eqtrd 2777 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = 𝐵)
5432, 53eqtr3id 2791 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵)
5526reseq1d 5937 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹𝐻) ↾ (1...𝑁)))
56 incom 4162 . . . . . . . 8 ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)})
5756, 12eqtrid 2789 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅)
58 ffn 6669 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)})
59 fnresdisj 6622 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
608, 58, 593syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
6157, 60mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅)
6261uneq2d 4124 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅))
63 resundir 5953 . . . . 5 ((𝐹𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁)))
64 un0 4351 . . . . . 6 ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁))
6564eqcomi 2746 . . . . 5 (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)
6662, 63, 653eqtr4g 2802 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁)))
67 fnresdm 6621 . . . . 5 (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹)
681, 34, 673syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹)
6955, 66, 683eqtrrd 2782 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7028, 54, 693jca 1129 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁))))
71 simpr1 1195 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
72 fzssp1 13485 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
73 fssres 6709 . . . . 5 ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
7471, 72, 73sylancl 587 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
75 simpr3 1197 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7675feq1d 6654 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴))
7774, 76mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴)
78 simpr2 1196 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵)
792adantr 482 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ)
80 nnuz 12807 . . . . . . 7 ℕ = (ℤ‘1)
8179, 80eleqtrdi 2848 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (ℤ‘1))
82 eluzfz2 13450 . . . . . 6 ((𝑁 + 1) ∈ (ℤ‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8381, 82syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8471, 83ffvelcdmd 7037 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴)
8578, 84eqeltrrd 2839 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵𝐴)
86 ffn 6669 . . . . . . . . 9 (𝐺:(1...(𝑁 + 1))⟶𝐴𝐺 Fn (1...(𝑁 + 1)))
8771, 86syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1)))
88 fnressn 7105 . . . . . . . 8 ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
8987, 83, 88syl2anc 585 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
90 opeq2 4832 . . . . . . . . 9 ((𝐺‘(𝑁 + 1)) = 𝐵 → ⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩ = ⟨(𝑁 + 1), 𝐵⟩)
9190sneqd 4599 . . . . . . . 8 ((𝐺‘(𝑁 + 1)) = 𝐵 → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9278, 91syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9389, 92eqtrd 2777 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), 𝐵⟩})
945, 93eqtr4id 2796 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)}))
9575, 94uneq12d 4125 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})))
96 simpl 484 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
9796, 19eleqtrdi 2848 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ‘(1 − 1)))
9814, 97, 21sylancr 588 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
9998reseq2d 5938 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})))
100 resundi 5952 . . . . 5 (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))
10199, 100eqtr2di 2794 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1))))
102 fnresdm 6621 . . . . 5 (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10371, 86, 1023syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10495, 101, 1033eqtrrd 2782 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹𝐻))
10577, 85, 1043jca 1129 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)))
10670, 105impbida 800 1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cun 3909  cin 3910  wss 3911  c0 4283  {csn 4587  cop 4593  cres 5636   Fn wfn 6492  wf 6493  cfv 6497  (class class class)co 7358  0cc0 11052  1c1 11053   + caddc 11055  cmin 11386  cn 12154  0cn0 12414  cz 12500  cuz 12764  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-uz 12765  df-fz 13426
This theorem is referenced by:  fseq1m1p1  13517
  Copyright terms: Public domain W3C validator