| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
| Ref | Expression |
|---|---|
| fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6485 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
| 2 | fnco 6599 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| 4 | 1, 3 | sylan2b 594 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 ran crn 5617 ∘ ccom 5620 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: cocan1 7225 cocan2 7226 coof 7634 ofco 7635 1stcof 7951 2ndcof 7952 axcc3 10329 dmaf 17956 cdaf 17957 gsumzaddlem 19834 prdstopn 23544 xpstopnlem2 23727 prdstgpd 24041 prdsxmslem2 24445 uniiccdif 25507 uniiccvol 25509 uniioombllem2 25512 resinf1o 26473 jensen 26927 occllem 31281 nlelchi 32039 hmopidmchi 32129 ofrco 32591 constcof 32602 1arithidomlem2 33499 mplvrpmrhm 33575 iprodefisumlem 35782 brcoffn 44069 brcofffn 44070 stoweidlem27 46071 gricushgr 47954 fucoid 49386 |
| Copyright terms: Public domain | W3C validator |