| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
| Ref | Expression |
|---|---|
| fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6532 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
| 2 | fnco 6653 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| 4 | 1, 3 | sylan2b 594 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3924 ran crn 5653 ∘ ccom 5656 Fn wfn 6523 ⟶wf 6524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-fun 6530 df-fn 6531 df-f 6532 |
| This theorem is referenced by: cocan1 7280 cocan2 7281 coof 7690 ofco 7691 1stcof 8013 2ndcof 8014 axcc3 10445 dmaf 18049 cdaf 18050 gsumzaddlem 19889 prdstopn 23553 xpstopnlem2 23736 prdstgpd 24050 prdsxmslem2 24455 uniiccdif 25518 uniiccvol 25520 uniioombllem2 25523 resinf1o 26483 jensen 26937 occllem 31218 nlelchi 31976 hmopidmchi 32066 1arithidomlem2 33488 iprodefisumlem 35686 brcoffn 43986 brcofffn 43987 stoweidlem27 45992 gricushgr 47839 fucoid 49122 |
| Copyright terms: Public domain | W3C validator |