![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version |
Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
Ref | Expression |
---|---|
fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6547 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
2 | fnco 6667 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
3 | 2 | 3expb 1118 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
4 | 1, 3 | sylan2b 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3945 ran crn 5674 ∘ ccom 5677 Fn wfn 6538 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: cocan1 7295 cocan2 7296 ofco 7703 1stcof 8018 2ndcof 8019 axcc3 10456 dmaf 18032 cdaf 18033 gsumzaddlem 19870 prdstopn 23526 xpstopnlem2 23709 prdstgpd 24023 prdsxmslem2 24432 uniiccdif 25501 uniiccvol 25503 uniioombllem2 25506 resinf1o 26464 jensen 26915 occllem 31107 nlelchi 31865 hmopidmchi 31955 iprodefisumlem 35329 brcoffn 43451 brcofffn 43452 stoweidlem27 45406 gricushgr 47174 |
Copyright terms: Public domain | W3C validator |