MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfco Structured version   Visualization version   GIF version

Theorem fnfco 6740
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnfco ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnfco
StepHypRef Expression
1 df-f 6532 . 2 (𝐺:𝐵𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴))
2 fnco 6653 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
323expb 1120 . 2 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴)) → (𝐹𝐺) Fn 𝐵)
41, 3sylan2b 594 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3924  ran crn 5653  ccom 5656   Fn wfn 6523  wf 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-fun 6530  df-fn 6531  df-f 6532
This theorem is referenced by:  cocan1  7280  cocan2  7281  coof  7690  ofco  7691  1stcof  8013  2ndcof  8014  axcc3  10445  dmaf  18049  cdaf  18050  gsumzaddlem  19889  prdstopn  23553  xpstopnlem2  23736  prdstgpd  24050  prdsxmslem2  24455  uniiccdif  25518  uniiccvol  25520  uniioombllem2  25523  resinf1o  26483  jensen  26937  occllem  31218  nlelchi  31976  hmopidmchi  32066  1arithidomlem2  33488  iprodefisumlem  35686  brcoffn  43986  brcofffn  43987  stoweidlem27  45992  gricushgr  47839  fucoid  49122
  Copyright terms: Public domain W3C validator