| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
| Ref | Expression |
|---|---|
| fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6490 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
| 2 | fnco 6604 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
| 3 | 2 | 3expb 1120 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| 4 | 1, 3 | sylan2b 594 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 ran crn 5624 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: cocan1 7232 cocan2 7233 coof 7641 ofco 7642 1stcof 7961 2ndcof 7962 axcc3 10351 dmaf 17974 cdaf 17975 gsumzaddlem 19818 prdstopn 23531 xpstopnlem2 23714 prdstgpd 24028 prdsxmslem2 24433 uniiccdif 25495 uniiccvol 25497 uniioombllem2 25500 resinf1o 26461 jensen 26915 occllem 31265 nlelchi 32023 hmopidmchi 32113 1arithidomlem2 33486 iprodefisumlem 35715 brcoffn 44006 brcofffn 44007 stoweidlem27 46012 gricushgr 47905 fucoid 49337 |
| Copyright terms: Public domain | W3C validator |