Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version |
Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
Ref | Expression |
---|---|
fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6434 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
2 | fnco 6545 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
3 | 2 | 3expb 1118 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
4 | 1, 3 | sylan2b 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3891 ran crn 5589 ∘ ccom 5592 Fn wfn 6425 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: cocan1 7156 cocan2 7157 ofco 7547 1stcof 7847 2ndcof 7848 axcc3 10178 dmaf 17745 cdaf 17746 gsumzaddlem 19503 prdstopn 22760 xpstopnlem2 22943 prdstgpd 23257 prdsxmslem2 23666 uniiccdif 24723 uniiccvol 24725 uniioombllem2 24728 resinf1o 25673 jensen 26119 occllem 29644 nlelchi 30402 hmopidmchi 30492 iprodefisumlem 33685 brcoffn 41593 brcofffn 41594 stoweidlem27 43522 isomushgr 45230 |
Copyright terms: Public domain | W3C validator |