Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnfco | Structured version Visualization version GIF version |
Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
Ref | Expression |
---|---|
fnfco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6339 | . 2 ⊢ (𝐺:𝐵⟶𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) | |
2 | fnco 6448 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | |
3 | 2 | 3expb 1117 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴)) → (𝐹 ∘ 𝐺) Fn 𝐵) |
4 | 1, 3 | sylan2b 596 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3858 ran crn 5525 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-fun 6337 df-fn 6338 df-f 6339 |
This theorem is referenced by: cocan1 7039 cocan2 7040 ofco 7427 1stcof 7723 2ndcof 7724 axcc3 9898 dmaf 17375 cdaf 17376 gsumzaddlem 19109 prdstopn 22328 xpstopnlem2 22511 prdstgpd 22825 prdsxmslem2 23231 uniiccdif 24278 uniiccvol 24280 uniioombllem2 24283 resinf1o 25227 jensen 25673 occllem 29185 nlelchi 29943 hmopidmchi 30033 iprodefisumlem 33221 brcoffn 41106 brcofffn 41107 stoweidlem27 43035 isomushgr 44711 |
Copyright terms: Public domain | W3C validator |