![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
umgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
umgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
umgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
umgrun | ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
2 | umgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | umgrf 26397 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
6 | umgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
7 | eqid 2826 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
8 | umgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | 7, 8 | umgrf 26397 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
11 | umgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
12 | 11 | eqcomd 2832 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
13 | 12 | pweqd 4384 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
14 | 13 | rabeqdv 3408 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
15 | 14 | feq3d 6266 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
16 | 10, 15 | mpbird 249 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
17 | umgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
18 | 5, 16, 17 | fun2d 6306 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
19 | umgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
20 | 19 | dmeqd 5559 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
21 | dmun 5564 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
22 | 20, 21 | syl6eq 2878 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
23 | umgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
24 | 23 | pweqd 4384 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
25 | 24 | rabeqdv 3408 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
26 | 19, 22, 25 | feq123d 6268 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
27 | 18, 26 | mpbird 249 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}) |
28 | umgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
29 | eqid 2826 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
30 | eqid 2826 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
31 | 29, 30 | isumgrs 26395 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
32 | 28, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
33 | 27, 32 | mpbird 249 | 1 ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 {crab 3122 ∪ cun 3797 ∩ cin 3798 ∅c0 4145 𝒫 cpw 4379 dom cdm 5343 ⟶wf 6120 ‘cfv 6124 2c2 11407 ♯chash 13411 Vtxcvtx 26295 iEdgciedg 26296 UMGraphcumgr 26380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-hash 13412 df-umgr 26382 |
This theorem is referenced by: umgrunop 26420 usgrun 26487 |
Copyright terms: Public domain | W3C validator |