MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrun Structured version   Visualization version   GIF version

Theorem umgrun 29096
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g (𝜑𝐺 ∈ UMGraph)
umgrun.h (𝜑𝐻 ∈ UMGraph)
umgrun.e 𝐸 = (iEdg‘𝐺)
umgrun.f 𝐹 = (iEdg‘𝐻)
umgrun.vg 𝑉 = (Vtx‘𝐺)
umgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
umgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
umgrun.u (𝜑𝑈𝑊)
umgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
umgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
umgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem umgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgrun.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
2 umgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 umgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3umgrf 29074 . . . . 5 (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 umgrun.h . . . . . 6 (𝜑𝐻 ∈ UMGraph)
7 eqid 2731 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 umgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8umgrf 29074 . . . . . 6 (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
11 umgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2737 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4567 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413rabeqdv 3410 . . . . . 6 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
1514feq3d 6636 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
1610, 15mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
17 umgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 6687 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
19 umgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 5845 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 5850 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21eqtrdi 2782 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 umgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 4567 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524rabeqdv 3410 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2619, 22, 25feq123d 6640 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2718, 26mpbird 257 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})
28 umgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2731 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2731 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isumgrs 29072 . . 3 (𝑈𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3228, 31syl 17 . 2 (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3327, 32mpbird 257 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  cun 3900  cin 3901  c0 4283  𝒫 cpw 4550  dom cdm 5616  wf 6477  cfv 6481  2c2 12177  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  UMGraphcumgr 29057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-hash 14235  df-umgr 29059
This theorem is referenced by:  umgrunop  29097  usgrun  29166
  Copyright terms: Public domain W3C validator