| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrun | Structured version Visualization version GIF version | ||
| Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
| umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| umgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| umgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| umgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| umgrun | ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 2 | umgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | umgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | umgrf 29031 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 6 | umgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | umgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | 7, 8 | umgrf 29031 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 11 | umgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 12 | 11 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
| 13 | 12 | pweqd 4582 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
| 14 | 13 | rabeqdv 3424 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 15 | 14 | feq3d 6675 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 16 | 10, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 17 | umgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 18 | 5, 16, 17 | fun2d 6726 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 19 | umgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 20 | 19 | dmeqd 5871 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
| 21 | dmun 5876 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
| 22 | 20, 21 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
| 23 | umgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 24 | 23 | pweqd 4582 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
| 25 | 24 | rabeqdv 3424 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 26 | 19, 22, 25 | feq123d 6679 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 27 | 18, 26 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}) |
| 28 | umgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 29 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
| 30 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
| 31 | 29, 30 | isumgrs 29029 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
| 32 | 28, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
| 33 | 27, 32 | mpbird 257 | 1 ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 ∪ cun 3914 ∩ cin 3915 ∅c0 4298 𝒫 cpw 4565 dom cdm 5640 ⟶wf 6509 ‘cfv 6513 2c2 12242 ♯chash 14301 Vtxcvtx 28929 iEdgciedg 28930 UMGraphcumgr 29014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-hash 14302 df-umgr 29016 |
| This theorem is referenced by: umgrunop 29054 usgrun 29123 |
| Copyright terms: Public domain | W3C validator |