![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
umgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
umgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
umgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
umgrun | ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
2 | umgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | umgrf 28613 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
6 | umgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
7 | eqid 2732 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
8 | umgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | 7, 8 | umgrf 28613 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
11 | umgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
12 | 11 | eqcomd 2738 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
13 | 12 | pweqd 4619 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
14 | 13 | rabeqdv 3447 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
15 | 14 | feq3d 6704 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
16 | 10, 15 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
17 | umgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
18 | 5, 16, 17 | fun2d 6755 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
19 | umgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
20 | 19 | dmeqd 5905 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
21 | dmun 5910 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
22 | 20, 21 | eqtrdi 2788 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
23 | umgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
24 | 23 | pweqd 4619 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
25 | 24 | rabeqdv 3447 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
26 | 19, 22, 25 | feq123d 6706 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
27 | 18, 26 | mpbird 256 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}) |
28 | umgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
29 | eqid 2732 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
30 | eqid 2732 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
31 | 29, 30 | isumgrs 28611 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
32 | 28, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
33 | 27, 32 | mpbird 256 | 1 ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3432 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 𝒫 cpw 4602 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 2c2 12271 ♯chash 14294 Vtxcvtx 28511 iEdgciedg 28512 UMGraphcumgr 28596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 df-umgr 28598 |
This theorem is referenced by: umgrunop 28636 usgrun 28702 |
Copyright terms: Public domain | W3C validator |