MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrun Structured version   Visualization version   GIF version

Theorem umgrun 28635
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g (𝜑𝐺 ∈ UMGraph)
umgrun.h (𝜑𝐻 ∈ UMGraph)
umgrun.e 𝐸 = (iEdg‘𝐺)
umgrun.f 𝐹 = (iEdg‘𝐻)
umgrun.vg 𝑉 = (Vtx‘𝐺)
umgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
umgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
umgrun.u (𝜑𝑈𝑊)
umgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
umgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
umgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem umgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgrun.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
2 umgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 umgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3umgrf 28613 . . . . 5 (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 umgrun.h . . . . . 6 (𝜑𝐻 ∈ UMGraph)
7 eqid 2732 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 umgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8umgrf 28613 . . . . . 6 (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
11 umgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2738 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4619 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413rabeqdv 3447 . . . . . 6 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
1514feq3d 6704 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
1610, 15mpbird 256 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
17 umgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 6755 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
19 umgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 5905 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 5910 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21eqtrdi 2788 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 umgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 4619 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524rabeqdv 3447 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2619, 22, 25feq123d 6706 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2718, 26mpbird 256 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})
28 umgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2732 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2732 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isumgrs 28611 . . 3 (𝑈𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3228, 31syl 17 . 2 (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3327, 32mpbird 256 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  {crab 3432  cun 3946  cin 3947  c0 4322  𝒫 cpw 4602  dom cdm 5676  wf 6539  cfv 6543  2c2 12271  chash 14294  Vtxcvtx 28511  iEdgciedg 28512  UMGraphcumgr 28596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-umgr 28598
This theorem is referenced by:  umgrunop  28636  usgrun  28702
  Copyright terms: Public domain W3C validator