| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrun | Structured version Visualization version GIF version | ||
| Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
| umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| umgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| umgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| umgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| umgrun | ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 2 | umgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | umgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | umgrf 29044 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 6 | umgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
| 7 | eqid 2734 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | umgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | 7, 8 | umgrf 29044 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 11 | umgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 12 | 11 | eqcomd 2740 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
| 13 | 12 | pweqd 4597 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
| 14 | 13 | rabeqdv 3435 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) |
| 15 | 14 | feq3d 6703 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})) |
| 16 | 10, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 17 | umgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 18 | 5, 16, 17 | fun2d 6752 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 19 | umgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 20 | 19 | dmeqd 5896 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
| 21 | dmun 5901 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
| 22 | 20, 21 | eqtrdi 2785 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
| 23 | umgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 24 | 23 | pweqd 4597 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
| 25 | 24 | rabeqdv 3435 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 26 | 19, 22, 25 | feq123d 6705 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 27 | 18, 26 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}) |
| 28 | umgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 29 | eqid 2734 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
| 30 | eqid 2734 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
| 31 | 29, 30 | isumgrs 29042 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
| 32 | 28, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})) |
| 33 | 27, 32 | mpbird 257 | 1 ⊢ (𝜑 → 𝑈 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {crab 3419 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 2c2 12303 ♯chash 14352 Vtxcvtx 28942 iEdgciedg 28943 UMGraphcumgr 29027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 df-umgr 29029 |
| This theorem is referenced by: umgrunop 29067 usgrun 29136 |
| Copyright terms: Public domain | W3C validator |