MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres2 Structured version   Visualization version   GIF version

Theorem funcnvres2 6582
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 6569 . . 3 (Fun 𝐹 → Fun 𝐹)
2 funcnvres 6580 . . 3 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
31, 2syl 17 . 2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
4 funrel 6519 . . . 4 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 6142 . . . 4 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 217 . . 3 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 5937 . 2 (Fun 𝐹 → (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴)))
83, 7eqtrd 2773 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ccnv 5633  cres 5636  cima 5637  Rel wrel 5639  Fun wfun 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-fun 6499
This theorem is referenced by:  funimacnv  6583  foimacnv  6802  unbenlem  16785  ofco2  21816  dvlog  26022  fresf1o  31591  fressupp  31649
  Copyright terms: Public domain W3C validator