MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres2 Structured version   Visualization version   GIF version

Theorem funcnvres2 6639
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 6626 . . 3 (Fun 𝐹 → Fun 𝐹)
2 funcnvres 6637 . . 3 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
31, 2syl 17 . 2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
4 funrel 6576 . . . 4 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 6200 . . . 4 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 217 . . 3 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 5988 . 2 (Fun 𝐹 → (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴)))
83, 7eqtrd 2766 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  ccnv 5681  cres 5684  cima 5685  Rel wrel 5687  Fun wfun 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6556
This theorem is referenced by:  funimacnv  6640  foimacnv  6860  unbenlem  16910  ofco2  22444  dvlog  26678  fresf1o  32548  fressupp  32600
  Copyright terms: Public domain W3C validator