MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres2 Structured version   Visualization version   GIF version

Theorem funcnvres2 6596
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 6583 . . 3 (Fun 𝐹 → Fun 𝐹)
2 funcnvres 6594 . . 3 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
31, 2syl 17 . 2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
4 funrel 6533 . . . 4 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 6162 . . . 4 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 218 . . 3 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 5949 . 2 (Fun 𝐹 → (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴)))
83, 7eqtrd 2764 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ccnv 5637  cres 5640  cima 5641  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513
This theorem is referenced by:  funimacnv  6597  foimacnv  6817  unbenlem  16879  ofco2  22338  dvlog  26560  fresf1o  32555  fressupp  32611
  Copyright terms: Public domain W3C validator