| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvres2 | Structured version Visualization version GIF version | ||
| Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
| Ref | Expression |
|---|---|
| funcnvres2 | ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvcnv 6586 | . . 3 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 2 | funcnvres 6597 | . . 3 ⊢ (Fun ◡◡𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 4 | funrel 6536 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | dfrel2 6165 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
| 7 | 6 | reseq1d 5952 | . 2 ⊢ (Fun 𝐹 → (◡◡𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 8 | 3, 7 | eqtrd 2765 | 1 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 |
| This theorem is referenced by: funimacnv 6600 foimacnv 6820 unbenlem 16886 ofco2 22345 dvlog 26567 fresf1o 32562 fressupp 32618 |
| Copyright terms: Public domain | W3C validator |