![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0spth | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 18-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0spth | ⊢ (𝐺 ∈ 𝑊 → (∅(SPaths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pth.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0trl 30154 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
3 | 2 | anbi1d 630 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) ↔ (𝑃:(0...0)⟶𝑉 ∧ Fun ◡𝑃))) |
4 | isspth 29760 | . 2 ⊢ (∅(SPaths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
5 | fz0sn 13684 | . . . . 5 ⊢ (0...0) = {0} | |
6 | 5 | feq2i 6739 | . . . 4 ⊢ (𝑃:(0...0)⟶𝑉 ↔ 𝑃:{0}⟶𝑉) |
7 | c0ex 11284 | . . . . . 6 ⊢ 0 ∈ V | |
8 | 7 | fsn2 7170 | . . . . 5 ⊢ (𝑃:{0}⟶𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ 𝑃 = {〈0, (𝑃‘0)〉})) |
9 | funcnvsn 6628 | . . . . . 6 ⊢ Fun ◡{〈0, (𝑃‘0)〉} | |
10 | cnveq 5898 | . . . . . . 7 ⊢ (𝑃 = {〈0, (𝑃‘0)〉} → ◡𝑃 = ◡{〈0, (𝑃‘0)〉}) | |
11 | 10 | funeqd 6600 | . . . . . 6 ⊢ (𝑃 = {〈0, (𝑃‘0)〉} → (Fun ◡𝑃 ↔ Fun ◡{〈0, (𝑃‘0)〉})) |
12 | 9, 11 | mpbiri 258 | . . . . 5 ⊢ (𝑃 = {〈0, (𝑃‘0)〉} → Fun ◡𝑃) |
13 | 8, 12 | simplbiim 504 | . . . 4 ⊢ (𝑃:{0}⟶𝑉 → Fun ◡𝑃) |
14 | 6, 13 | sylbi 217 | . . 3 ⊢ (𝑃:(0...0)⟶𝑉 → Fun ◡𝑃) |
15 | 14 | pm4.71i 559 | . 2 ⊢ (𝑃:(0...0)⟶𝑉 ↔ (𝑃:(0...0)⟶𝑉 ∧ Fun ◡𝑃)) |
16 | 3, 4, 15 | 3bitr4g 314 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(SPaths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 〈cop 4654 class class class wbr 5166 ◡ccnv 5699 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ...cfz 13567 Vtxcvtx 29031 Trailsctrls 29726 SPathscspths 29749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-wlks 29635 df-trls 29728 df-spths 29753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |