![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0spth | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 18-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pth.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
0spth | β’ (πΊ β π β (β (SPathsβπΊ)π β π:(0...0)βΆπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pth.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | 0trl 29931 | . . 3 β’ (πΊ β π β (β (TrailsβπΊ)π β π:(0...0)βΆπ)) |
3 | 2 | anbi1d 630 | . 2 β’ (πΊ β π β ((β (TrailsβπΊ)π β§ Fun β‘π) β (π:(0...0)βΆπ β§ Fun β‘π))) |
4 | isspth 29537 | . 2 β’ (β (SPathsβπΊ)π β (β (TrailsβπΊ)π β§ Fun β‘π)) | |
5 | fz0sn 13633 | . . . . 5 β’ (0...0) = {0} | |
6 | 5 | feq2i 6714 | . . . 4 β’ (π:(0...0)βΆπ β π:{0}βΆπ) |
7 | c0ex 11238 | . . . . . 6 β’ 0 β V | |
8 | 7 | fsn2 7145 | . . . . 5 β’ (π:{0}βΆπ β ((πβ0) β π β§ π = {β¨0, (πβ0)β©})) |
9 | funcnvsn 6603 | . . . . . 6 β’ Fun β‘{β¨0, (πβ0)β©} | |
10 | cnveq 5876 | . . . . . . 7 β’ (π = {β¨0, (πβ0)β©} β β‘π = β‘{β¨0, (πβ0)β©}) | |
11 | 10 | funeqd 6575 | . . . . . 6 β’ (π = {β¨0, (πβ0)β©} β (Fun β‘π β Fun β‘{β¨0, (πβ0)β©})) |
12 | 9, 11 | mpbiri 258 | . . . . 5 β’ (π = {β¨0, (πβ0)β©} β Fun β‘π) |
13 | 8, 12 | simplbiim 504 | . . . 4 β’ (π:{0}βΆπ β Fun β‘π) |
14 | 6, 13 | sylbi 216 | . . 3 β’ (π:(0...0)βΆπ β Fun β‘π) |
15 | 14 | pm4.71i 559 | . 2 β’ (π:(0...0)βΆπ β (π:(0...0)βΆπ β§ Fun β‘π)) |
16 | 3, 4, 15 | 3bitr4g 314 | 1 β’ (πΊ β π β (β (SPathsβπΊ)π β π:(0...0)βΆπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 β c0 4323 {csn 4629 β¨cop 4635 class class class wbr 5148 β‘ccnv 5677 Fun wfun 6542 βΆwf 6544 βcfv 6548 (class class class)co 7420 0cc0 11138 ...cfz 13516 Vtxcvtx 28808 Trailsctrls 29503 SPathscspths 29526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-wlks 29412 df-trls 29505 df-spths 29530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |