![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsnel | Structured version Visualization version GIF version |
Description: The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.) |
Ref | Expression |
---|---|
preimafvsnel | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
2 | eqidd 2726 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
3 | fniniseg 7068 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑋)))) | |
4 | 3 | adantr 479 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑋)))) |
5 | 1, 2, 4 | mpbir2and 711 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4630 ◡ccnv 5677 “ cima 5681 Fn wfn 6544 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 |
This theorem is referenced by: preimafvn0 46857 uniimaprimaeqfv 46859 fvelsetpreimafv 46864 0nelsetpreimafv 46867 |
Copyright terms: Public domain | W3C validator |