![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsnel | Structured version Visualization version GIF version |
Description: The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.) |
Ref | Expression |
---|---|
preimafvsnel | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
2 | eqidd 2732 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
3 | fniniseg 7061 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑋)))) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) = (𝐹‘𝑋)))) |
5 | 1, 2, 4 | mpbir2and 710 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {csn 4628 ◡ccnv 5675 “ cima 5679 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: preimafvn0 46347 uniimaprimaeqfv 46349 fvelsetpreimafv 46354 0nelsetpreimafv 46357 |
Copyright terms: Public domain | W3C validator |