Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsnel Structured version   Visualization version   GIF version

Theorem preimafvsnel 46346
Description: The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.)
Assertion
Ref Expression
preimafvsnel ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))

Proof of Theorem preimafvsnel
StepHypRef Expression
1 simpr 484 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
2 eqidd 2732 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
3 fniniseg 7061 . . 3 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
43adantr 480 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
51, 2, 4mpbir2and 710 1 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {csn 4628  ccnv 5675  cima 5679   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  preimafvn0  46347  uniimaprimaeqfv  46349  fvelsetpreimafv  46354  0nelsetpreimafv  46357
  Copyright terms: Public domain W3C validator