Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsnel Structured version   Visualization version   GIF version

Theorem preimafvsnel 47383
Description: The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.)
Assertion
Ref Expression
preimafvsnel ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))

Proof of Theorem preimafvsnel
StepHypRef Expression
1 simpr 484 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
2 eqidd 2730 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
3 fniniseg 6998 . . 3 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
43adantr 480 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
51, 2, 4mpbir2and 713 1 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4579  ccnv 5622  cima 5626   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  preimafvn0  47384  uniimaprimaeqfv  47386  fvelsetpreimafv  47391  0nelsetpreimafv  47394
  Copyright terms: Public domain W3C validator