Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsnel Structured version   Visualization version   GIF version

Theorem preimafvsnel 46856
Description: The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.)
Assertion
Ref Expression
preimafvsnel ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))

Proof of Theorem preimafvsnel
StepHypRef Expression
1 simpr 483 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
2 eqidd 2726 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
3 fniniseg 7068 . . 3 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
43adantr 479 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑋))))
51, 2, 4mpbir2and 711 1 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {csn 4630  ccnv 5677  cima 5681   Fn wfn 6544  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557
This theorem is referenced by:  preimafvn0  46857  uniimaprimaeqfv  46859  fvelsetpreimafv  46864  0nelsetpreimafv  46867
  Copyright terms: Public domain W3C validator