![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl | Structured version Visualization version GIF version |
Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator (it is needed only for the function at the denominator). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfdivdmmbl.1 | ⊢ Ⅎ𝑥𝜑 |
smfdivdmmbl.2 | ⊢ Ⅎ𝑥𝐵 |
smfdivdmmbl.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdivdmmbl.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
smfdivdmmbl.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
smfdivdmmbl.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ 𝑊) |
smfdivdmmbl.7 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
smfdivdmmbl.8 | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ 𝐷 ≠ 0} |
Ref | Expression |
---|---|
smfdivdmmbl | ⊢ (𝜑 → (𝐴 ∩ 𝐸) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdivdmmbl.3 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | smfdivdmmbl.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | smfdivdmmbl.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | smfdivdmmbl.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
5 | smfdivdmmbl.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
6 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥ℝ | |
7 | smfdivdmmbl.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ 𝑊) | |
8 | smfdivdmmbl.7 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
9 | 3, 4, 1, 7, 8 | smffmptf 44598 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷):𝐵⟶ℝ) |
10 | 4, 6, 9 | fvmptelcdmf 43065 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) |
11 | 0red 11057 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | smfdivdmmbl.8 | . . 3 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ 𝐷 ≠ 0} | |
13 | 3, 4, 1, 5, 10, 8, 11, 12 | smfdmmblpimne 44631 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
14 | 1, 2, 13 | salincld 44146 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐸) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ≠ wne 2940 {crab 3403 ∩ cin 3895 ↦ cmpt 5169 ‘cfv 6465 ℝcr 10949 0cc0 10950 SAlgcsalg 44104 SMblFncsmblfn 44489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cc 10270 ax-ac2 10298 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-card 9774 df-acn 9777 df-ac 9951 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-q 12768 df-rp 12810 df-ioo 13162 df-ico 13164 df-fl 13591 df-rest 17207 df-salg 44105 df-smblfn 44490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |