![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrexmpl | Structured version Visualization version GIF version |
Description: 𝐺 is a simple graph of five vertices 0, 1, 2, 3, 4, with edges {0, 1}, {1, 2}, {2, 0}, {0, 3}. (Contributed by Alexander van der Vekens, 15-Aug-2017.) (Revised by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
usgrexmpl.v | ⊢ 𝑉 = (0...4) |
usgrexmpl.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 |
usgrexmpl.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
usgrexmpl | ⊢ 𝐺 ∈ USGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexmpl.v | . . 3 ⊢ 𝑉 = (0...4) | |
2 | usgrexmpl.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 | |
3 | 1, 2 | usgrexmplef 29149 | . 2 ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
4 | usgrexmpl.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
5 | opex 5466 | . . . 4 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
6 | 4, 5 | eqeltri 2821 | . . 3 ⊢ 𝐺 ∈ V |
7 | eqid 2725 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | eqid 2725 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
9 | 7, 8 | isusgrs 29046 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})) |
10 | 1, 2, 4 | usgrexmpllem 29150 | . . . . 5 ⊢ ((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) |
11 | simpr 483 | . . . . . 6 ⊢ (((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) → (iEdg‘𝐺) = 𝐸) | |
12 | 11 | dmeqd 5908 | . . . . . 6 ⊢ (((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) → dom (iEdg‘𝐺) = dom 𝐸) |
13 | pweq 4618 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = 𝑉 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉) | |
14 | 13 | adantr 479 | . . . . . . 7 ⊢ (((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉) |
15 | 14 | rabeqdv 3434 | . . . . . 6 ⊢ (((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) → {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
16 | 11, 12, 15 | f1eq123d 6830 | . . . . 5 ⊢ (((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) |
17 | 10, 16 | ax-mp 5 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
18 | 9, 17 | bitrdi 286 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) |
19 | 6, 18 | ax-mp 5 | . 2 ⊢ (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
20 | 3, 19 | mpbir 230 | 1 ⊢ 𝐺 ∈ USGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 𝒫 cpw 4604 {cpr 4632 〈cop 4636 dom cdm 5678 –1-1→wf1 6546 ‘cfv 6549 (class class class)co 7419 0cc0 11145 1c1 11146 2c2 12305 3c3 12306 4c4 12307 ...cfz 13524 ♯chash 14330 〈“cs4 14835 Vtxcvtx 28886 iEdgciedg 28887 USGraphcusgr 29039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9931 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14331 df-word 14506 df-concat 14562 df-s1 14587 df-s2 14840 df-s3 14841 df-s4 14842 df-vtx 28888 df-iedg 28889 df-usgr 29041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |