![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho2coi | Structured version Visualization version GIF version |
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
ho2coi | ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hocofi 31789 | . . 3 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 31787 | . 2 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴))) |
6 | 4 | ffvelcdmi 7115 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
7 | 1, 2 | hocoi 31787 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
9 | 5, 8 | eqtrd 2774 | 1 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ∘ ccom 5703 ⟶wf 6568 ‘cfv 6572 ℋchba 30942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-fv 6580 |
This theorem is referenced by: pj2cocli 32228 |
Copyright terms: Public domain | W3C validator |