HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ho2coi Structured version   Visualization version   GIF version

Theorem ho2coi 31765
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
ho2coi (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇𝐴))))

Proof of Theorem ho2coi
StepHypRef Expression
1 hods.1 . . . 4 𝑅: ℋ⟶ ℋ
2 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
31, 2hocofi 31750 . . 3 (𝑅𝑆): ℋ⟶ ℋ
4 hods.3 . . 3 𝑇: ℋ⟶ ℋ
53, 4hocoi 31748 . 2 (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = ((𝑅𝑆)‘(𝑇𝐴)))
64ffvelcdmi 7024 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
71, 2hocoi 31748 . . 3 ((𝑇𝐴) ∈ ℋ → ((𝑅𝑆)‘(𝑇𝐴)) = (𝑅‘(𝑆‘(𝑇𝐴))))
86, 7syl 17 . 2 (𝐴 ∈ ℋ → ((𝑅𝑆)‘(𝑇𝐴)) = (𝑅‘(𝑆‘(𝑇𝐴))))
95, 8eqtrd 2768 1 (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  ccom 5625  wf 6484  cfv 6488  chba 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496
This theorem is referenced by:  pj2cocli  32189
  Copyright terms: Public domain W3C validator