![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho2coi | Structured version Visualization version GIF version |
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
ho2coi | ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hocofi 31006 | . . 3 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 31004 | . 2 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴))) |
6 | 4 | ffvelcdmi 7082 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
7 | 1, 2 | hocoi 31004 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
9 | 5, 8 | eqtrd 2772 | 1 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∘ ccom 5679 ⟶wf 6536 ‘cfv 6540 ℋchba 30159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 |
This theorem is referenced by: pj2cocli 31445 |
Copyright terms: Public domain | W3C validator |