Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ho2coi | Structured version Visualization version GIF version |
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
ho2coi | ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hocofi 30029 | . . 3 ⊢ (𝑅 ∘ 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 30027 | . 2 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴))) |
6 | 4 | ffvelrni 6942 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
7 | 1, 2 | hocoi 30027 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑅 ∘ 𝑆)‘(𝑇‘𝐴)) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
9 | 5, 8 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 ℋchba 29182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: pj2cocli 30468 |
Copyright terms: Public domain | W3C validator |