HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ho2coi Structured version   Visualization version   GIF version

Theorem ho2coi 31743
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
ho2coi (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇𝐴))))

Proof of Theorem ho2coi
StepHypRef Expression
1 hods.1 . . . 4 𝑅: ℋ⟶ ℋ
2 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
31, 2hocofi 31728 . . 3 (𝑅𝑆): ℋ⟶ ℋ
4 hods.3 . . 3 𝑇: ℋ⟶ ℋ
53, 4hocoi 31726 . 2 (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = ((𝑅𝑆)‘(𝑇𝐴)))
64ffvelcdmi 7021 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
71, 2hocoi 31726 . . 3 ((𝑇𝐴) ∈ ℋ → ((𝑅𝑆)‘(𝑇𝐴)) = (𝑅‘(𝑆‘(𝑇𝐴))))
86, 7syl 17 . 2 (𝐴 ∈ ℋ → ((𝑅𝑆)‘(𝑇𝐴)) = (𝑅‘(𝑆‘(𝑇𝐴))))
95, 8eqtrd 2764 1 (𝐴 ∈ ℋ → (((𝑅𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ccom 5627  wf 6482  cfv 6486  chba 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  pj2cocli  32167
  Copyright terms: Public domain W3C validator