HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocoi Structured version   Visualization version   GIF version

Theorem hocoi 31739
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocoi (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))

Proof of Theorem hocoi
StepHypRef Expression
1 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
2 fvco3 6921 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
31, 2mpan 690 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ccom 5620  wf 6477  cfv 6481  chba 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  hococli  31740  hocadddiri  31754  hocsubdiri  31755  ho2coi  31756  ho0coi  31763  hoid1i  31764  hoid1ri  31765  hoddii  31964  lnopcoi  31978  lnopco0i  31979  nmopcoi  32070  adjcoi  32075  nmopcoadji  32076  hmopidmchi  32126  hmopidmpji  32127  pjsdii  32130  pjddii  32131  pjcoi  32133  pjcohocli  32178  pjadj2coi  32179  pj3lem1  32181
  Copyright terms: Public domain W3C validator