HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocoi Structured version   Visualization version   GIF version

Theorem hocoi 31784
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocoi (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))

Proof of Theorem hocoi
StepHypRef Expression
1 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
2 fvco3 7007 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
31, 2mpan 690 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ccom 5688  wf 6556  cfv 6560  chba 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568
This theorem is referenced by:  hococli  31785  hocadddiri  31799  hocsubdiri  31800  ho2coi  31801  ho0coi  31808  hoid1i  31809  hoid1ri  31810  hoddii  32009  lnopcoi  32023  lnopco0i  32024  nmopcoi  32115  adjcoi  32120  nmopcoadji  32121  hmopidmchi  32171  hmopidmpji  32172  pjsdii  32175  pjddii  32176  pjcoi  32178  pjcohocli  32223  pjadj2coi  32224  pj3lem1  32226
  Copyright terms: Public domain W3C validator