Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocoi Structured version   Visualization version   GIF version

Theorem hocoi 29551
 Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocoi (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))

Proof of Theorem hocoi
StepHypRef Expression
1 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
2 fvco3 6741 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
31, 2mpan 689 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112   ∘ ccom 5527  ⟶wf 6324  ‘cfv 6328   ℋchba 28706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336 This theorem is referenced by:  hococli  29552  hocadddiri  29566  hocsubdiri  29567  ho2coi  29568  ho0coi  29575  hoid1i  29576  hoid1ri  29577  hoddii  29776  lnopcoi  29790  lnopco0i  29791  nmopcoi  29882  adjcoi  29887  nmopcoadji  29888  hmopidmchi  29938  hmopidmpji  29939  pjsdii  29942  pjddii  29943  pjcoi  29945  pjcohocli  29990  pjadj2coi  29991  pj3lem1  29993
 Copyright terms: Public domain W3C validator