Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hocoi | Structured version Visualization version GIF version |
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocoi | ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.2 | . 2 ⊢ 𝑇: ℋ⟶ ℋ | |
2 | fvco3 6861 | . 2 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝐴) = (𝑆‘(𝑇‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 ℋchba 29260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 |
This theorem is referenced by: hococli 30106 hocadddiri 30120 hocsubdiri 30121 ho2coi 30122 ho0coi 30129 hoid1i 30130 hoid1ri 30131 hoddii 30330 lnopcoi 30344 lnopco0i 30345 nmopcoi 30436 adjcoi 30441 nmopcoadji 30442 hmopidmchi 30492 hmopidmpji 30493 pjsdii 30496 pjddii 30497 pjcoi 30499 pjcohocli 30544 pjadj2coi 30545 pj3lem1 30547 |
Copyright terms: Public domain | W3C validator |