HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocoi Structured version   Visualization version   GIF version

Theorem hocoi 31796
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocoi (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))

Proof of Theorem hocoi
StepHypRef Expression
1 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
2 fvco3 7021 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
31, 2mpan 689 1 (𝐴 ∈ ℋ → ((𝑆𝑇)‘𝐴) = (𝑆‘(𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  ccom 5704  wf 6569  cfv 6573  chba 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  hococli  31797  hocadddiri  31811  hocsubdiri  31812  ho2coi  31813  ho0coi  31820  hoid1i  31821  hoid1ri  31822  hoddii  32021  lnopcoi  32035  lnopco0i  32036  nmopcoi  32127  adjcoi  32132  nmopcoadji  32133  hmopidmchi  32183  hmopidmpji  32184  pjsdii  32187  pjddii  32188  pjcoi  32190  pjcohocli  32235  pjadj2coi  32236  pj3lem1  32238
  Copyright terms: Public domain W3C validator