Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocsubdiri Structured version   Visualization version   GIF version

Theorem hocsubdiri 29211
 Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocsubdiri ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))

Proof of Theorem hocsubdiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hosubcli 29200 . . . . 5 (𝑅op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 29195 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 29197 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 29197 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hodval 29173 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1524 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
104ffvelrni 6622 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hodval 29173 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1524 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
141, 4hocoi 29195 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 29195 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 6940 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2817 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2817 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2817 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥))
2019rgen 3104 . 2 𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥)
213, 4hocofi 29197 . . 3 ((𝑅op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hosubcli 29200 . . 3 ((𝑅𝑇) −op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 29192 . 2 (∀𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) ↔ ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇)))
2420, 23mpbi 222 1 ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1601   ∈ wcel 2107  ∀wral 3090   ∘ ccom 5359  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922   ℋchba 28348   −ℎ cmv 28354   −op chod 28369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-hilex 28428  ax-hfvadd 28429  ax-hfvmul 28434 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-ltxr 10416  df-sub 10608  df-neg 10609  df-hvsub 28400  df-hodif 29163 This theorem is referenced by:  hocsubdir  29216  unierri  29535  pjclem3  29628
 Copyright terms: Public domain W3C validator