HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocsubdiri Structured version   Visualization version   GIF version

Theorem hocsubdiri 31771
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocsubdiri ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))

Proof of Theorem hocsubdiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hosubcli 31760 . . . . 5 (𝑅op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 31755 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 31757 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 31757 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hodval 31733 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
104ffvelcdmi 7025 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hodval 31733 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1453 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
141, 4hocoi 31755 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 31755 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7373 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2771 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2771 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2771 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥))
2019rgen 3051 . 2 𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥)
213, 4hocofi 31757 . . 3 ((𝑅op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hosubcli 31760 . . 3 ((𝑅𝑇) −op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 31752 . 2 (∀𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) ↔ ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇)))
2420, 23mpbi 230 1 ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wral 3049  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  chba 30910   cmv 30916  op chod 30931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-hilex 30990  ax-hfvadd 30991  ax-hfvmul 30996
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-ltxr 11161  df-sub 11356  df-neg 11357  df-hvsub 30962  df-hodif 31723
This theorem is referenced by:  hocsubdir  31776  unierri  32095  pjclem3  32188
  Copyright terms: Public domain W3C validator