HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocsubdiri Structured version   Visualization version   GIF version

Theorem hocsubdiri 30043
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocsubdiri ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))

Proof of Theorem hocsubdiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hosubcli 30032 . . . . 5 (𝑅op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 30027 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 30029 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 30029 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hodval 30005 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1449 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
104ffvelrni 6942 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hodval 30005 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1449 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
141, 4hocoi 30027 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 30027 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7273 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2781 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2781 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2781 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥))
2019rgen 3073 . 2 𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥)
213, 4hocofi 30029 . . 3 ((𝑅op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hosubcli 30032 . . 3 ((𝑅𝑇) −op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 30024 . 2 (∀𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) ↔ ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇)))
2420, 23mpbi 229 1 ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  chba 29182   cmv 29188  op chod 29203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hfvmul 29268
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-hvsub 29234  df-hodif 29995
This theorem is referenced by:  hocsubdir  30048  unierri  30367  pjclem3  30460
  Copyright terms: Public domain W3C validator