| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocsubdiri | Structured version Visualization version GIF version | ||
| Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocsubdiri | ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hosubcli 31731 | . . . . 5 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
| 5 | 3, 4 | hocoi 31726 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
| 6 | 1, 4 | hocofi 31728 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
| 7 | 2, 4 | hocofi 31728 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| 8 | hodval 31704 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
| 9 | 6, 7, 8 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 10 | 4 | ffvelcdmi 7021 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 11 | hodval 31704 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) | |
| 12 | 1, 2, 11 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 14 | 1, 4 | hocoi 31726 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
| 15 | 2, 4 | hocoi 31726 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 16 | 14, 15 | oveq12d 7371 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 17 | 13, 16 | eqtr4d 2767 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 18 | 9, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
| 19 | 5, 18 | eqtr4d 2767 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥)) |
| 20 | 19 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) |
| 21 | 3, 4 | hocofi 31728 | . . 3 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
| 22 | 6, 7 | hosubcli 31731 | . . 3 ⊢ ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
| 23 | 21, 22 | hoeqi 31723 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
| 24 | 20, 23 | mpbi 230 | 1 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℋchba 30881 −ℎ cmv 30887 −op chod 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hilex 30961 ax-hfvadd 30962 ax-hfvmul 30967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 df-hvsub 30933 df-hodif 31694 |
| This theorem is referenced by: hocsubdir 31747 unierri 32066 pjclem3 32159 |
| Copyright terms: Public domain | W3C validator |