HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocsubdiri Structured version   Visualization version   GIF version

Theorem hocsubdiri 31812
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hocsubdiri ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))

Proof of Theorem hocsubdiri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
31, 2hosubcli 31801 . . . . 5 (𝑅op 𝑆): ℋ⟶ ℋ
4 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
53, 4hocoi 31796 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
61, 4hocofi 31798 . . . . . 6 (𝑅𝑇): ℋ⟶ ℋ
72, 4hocofi 31798 . . . . . 6 (𝑆𝑇): ℋ⟶ ℋ
8 hodval 31774 . . . . . 6 (((𝑅𝑇): ℋ⟶ ℋ ∧ (𝑆𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
96, 7, 8mp3an12 1451 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
104ffvelcdmi 7117 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
11 hodval 31774 . . . . . . . 8 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
121, 2, 11mp3an12 1451 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1310, 12syl 17 . . . . . 6 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
141, 4hocoi 31796 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑅𝑇)‘𝑥) = (𝑅‘(𝑇𝑥)))
152, 4hocoi 31796 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
1614, 15oveq12d 7466 . . . . . 6 (𝑥 ∈ ℋ → (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)) = ((𝑅‘(𝑇𝑥)) − (𝑆‘(𝑇𝑥))))
1713, 16eqtr4d 2783 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘(𝑇𝑥)) = (((𝑅𝑇)‘𝑥) − ((𝑆𝑇)‘𝑥)))
189, 17eqtr4d 2783 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) = ((𝑅op 𝑆)‘(𝑇𝑥)))
195, 18eqtr4d 2783 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥))
2019rgen 3069 . 2 𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥)
213, 4hocofi 31798 . . 3 ((𝑅op 𝑆) ∘ 𝑇): ℋ⟶ ℋ
226, 7hosubcli 31801 . . 3 ((𝑅𝑇) −op (𝑆𝑇)): ℋ⟶ ℋ
2321, 22hoeqi 31793 . 2 (∀𝑥 ∈ ℋ (((𝑅op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅𝑇) −op (𝑆𝑇))‘𝑥) ↔ ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇)))
2420, 23mpbi 230 1 ((𝑅op 𝑆) ∘ 𝑇) = ((𝑅𝑇) −op (𝑆𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  chba 30951   cmv 30957  op chod 30972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hilex 31031  ax-hfvadd 31032  ax-hfvmul 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-hvsub 31003  df-hodif 31764
This theorem is referenced by:  hocsubdir  31817  unierri  32136  pjclem3  32229
  Copyright terms: Public domain W3C validator