![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hocsubdiri | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocsubdiri | ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hosubcli 29200 | . . . . 5 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 29195 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
6 | 1, 4 | hocofi 29197 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
7 | 2, 4 | hocofi 29197 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
8 | hodval 29173 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
9 | 6, 7, 8 | mp3an12 1524 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
10 | 4 | ffvelrni 6622 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
11 | hodval 29173 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) | |
12 | 1, 2, 11 | mp3an12 1524 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
14 | 1, 4 | hocoi 29195 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
15 | 2, 4 | hocoi 29195 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
16 | 14, 15 | oveq12d 6940 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
17 | 13, 16 | eqtr4d 2817 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
18 | 9, 17 | eqtr4d 2817 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
19 | 5, 18 | eqtr4d 2817 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥)) |
20 | 19 | rgen 3104 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) |
21 | 3, 4 | hocofi 29197 | . . 3 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
22 | 6, 7 | hosubcli 29200 | . . 3 ⊢ ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 29192 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
24 | 20, 23 | mpbi 222 | 1 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∘ ccom 5359 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ℋchba 28348 −ℎ cmv 28354 −op chod 28369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hilex 28428 ax-hfvadd 28429 ax-hfvmul 28434 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-hvsub 28400 df-hodif 29163 |
This theorem is referenced by: hocsubdir 29216 unierri 29535 pjclem3 29628 |
Copyright terms: Public domain | W3C validator |