![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hocsubdiri | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocsubdiri | ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hosubcli 31009 | . . . . 5 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 31004 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
6 | 1, 4 | hocofi 31006 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
7 | 2, 4 | hocofi 31006 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
8 | hodval 30982 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
9 | 6, 7, 8 | mp3an12 1451 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
10 | 4 | ffvelcdmi 7082 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
11 | hodval 30982 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) | |
12 | 1, 2, 11 | mp3an12 1451 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
14 | 1, 4 | hocoi 31004 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
15 | 2, 4 | hocoi 31004 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
16 | 14, 15 | oveq12d 7423 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
17 | 13, 16 | eqtr4d 2775 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
18 | 9, 17 | eqtr4d 2775 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
19 | 5, 18 | eqtr4d 2775 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥)) |
20 | 19 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) |
21 | 3, 4 | hocofi 31006 | . . 3 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
22 | 6, 7 | hosubcli 31009 | . . 3 ⊢ ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 31001 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
24 | 20, 23 | mpbi 229 | 1 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∘ ccom 5679 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ℋchba 30159 −ℎ cmv 30165 −op chod 30180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hilex 30239 ax-hfvadd 30240 ax-hfvmul 30245 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-hvsub 30211 df-hodif 30972 |
This theorem is referenced by: hocsubdir 31025 unierri 31344 pjclem3 31437 |
Copyright terms: Public domain | W3C validator |