![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hocsubdiri | Structured version Visualization version GIF version |
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hocsubdiri | ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hosubcli 30753 | . . . . 5 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
5 | 3, 4 | hocoi 30748 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
6 | 1, 4 | hocofi 30750 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
7 | 2, 4 | hocofi 30750 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
8 | hodval 30726 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
9 | 6, 7, 8 | mp3an12 1452 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
10 | 4 | ffvelcdmi 7035 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
11 | hodval 30726 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) | |
12 | 1, 2, 11 | mp3an12 1452 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
14 | 1, 4 | hocoi 30748 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
15 | 2, 4 | hocoi 30748 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
16 | 14, 15 | oveq12d 7376 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
17 | 13, 16 | eqtr4d 2776 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
18 | 9, 17 | eqtr4d 2776 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
19 | 5, 18 | eqtr4d 2776 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥)) |
20 | 19 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) |
21 | 3, 4 | hocofi 30750 | . . 3 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
22 | 6, 7 | hosubcli 30753 | . . 3 ⊢ ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 30745 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
24 | 20, 23 | mpbi 229 | 1 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∘ ccom 5638 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 ℋchba 29903 −ℎ cmv 29909 −op chod 29924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-hilex 29983 ax-hfvadd 29984 ax-hfvmul 29989 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-ltxr 11199 df-sub 11392 df-neg 11393 df-hvsub 29955 df-hodif 30716 |
This theorem is referenced by: hocsubdir 30769 unierri 31088 pjclem3 31181 |
Copyright terms: Public domain | W3C validator |