| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hocsubdiri | Structured version Visualization version GIF version | ||
| Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hocsubdiri | ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . . . 6 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hosubcli 31739 | . . . . 5 ⊢ (𝑅 −op 𝑆): ℋ⟶ ℋ |
| 4 | hods.3 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ | |
| 5 | 3, 4 | hocoi 31734 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
| 6 | 1, 4 | hocofi 31736 | . . . . . 6 ⊢ (𝑅 ∘ 𝑇): ℋ⟶ ℋ |
| 7 | 2, 4 | hocofi 31736 | . . . . . 6 ⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
| 8 | hodval 31712 | . . . . . 6 ⊢ (((𝑅 ∘ 𝑇): ℋ⟶ ℋ ∧ (𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | |
| 9 | 6, 7, 8 | mp3an12 1453 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 10 | 4 | ffvelcdmi 7011 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 11 | hodval 31712 | . . . . . . . 8 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) | |
| 12 | 1, 2, 11 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑇‘𝑥) ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 14 | 1, 4 | hocoi 31734 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑅 ∘ 𝑇)‘𝑥) = (𝑅‘(𝑇‘𝑥))) |
| 15 | 2, 4 | hocoi 31734 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 16 | 14, 15 | oveq12d 7359 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥)) = ((𝑅‘(𝑇‘𝑥)) −ℎ (𝑆‘(𝑇‘𝑥)))) |
| 17 | 13, 16 | eqtr4d 2768 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑅 −op 𝑆)‘(𝑇‘𝑥)) = (((𝑅 ∘ 𝑇)‘𝑥) −ℎ ((𝑆 ∘ 𝑇)‘𝑥))) |
| 18 | 9, 17 | eqtr4d 2768 | . . . 4 ⊢ (𝑥 ∈ ℋ → (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) = ((𝑅 −op 𝑆)‘(𝑇‘𝑥))) |
| 19 | 5, 18 | eqtr4d 2768 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥)) |
| 20 | 19 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) |
| 21 | 3, 4 | hocofi 31736 | . . 3 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇): ℋ⟶ ℋ |
| 22 | 6, 7 | hosubcli 31739 | . . 3 ⊢ ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
| 23 | 21, 22 | hoeqi 31731 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑅 −op 𝑆) ∘ 𝑇)‘𝑥) = (((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))‘𝑥) ↔ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) |
| 24 | 20, 23 | mpbi 230 | 1 ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∘ ccom 5618 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℋchba 30889 −ℎ cmv 30895 −op chod 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-hilex 30969 ax-hfvadd 30970 ax-hfvmul 30975 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 df-sub 11338 df-neg 11339 df-hvsub 30941 df-hodif 31702 |
| This theorem is referenced by: hocsubdir 31755 unierri 32074 pjclem3 32167 |
| Copyright terms: Public domain | W3C validator |