MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infnlb Structured version   Visualization version   GIF version

Theorem infnlb 9487
Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infnlb (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infnlb
StepHypRef Expression
1 infcl.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
2 infcl.2 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
31, 2infglb 9485 . . . . 5 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
43expdimp 454 . . . 4 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
5 dfrex2 3074 . . . 4 (∃𝑧𝐵 𝑧𝑅𝐶 ↔ ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶)
64, 5imbitrdi 250 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶))
76con2d 134 . 2 ((𝜑𝐶𝐴) → (∀𝑧𝐵 ¬ 𝑧𝑅𝐶 → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
87expimpd 455 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2107  wral 3062  wrex 3071   class class class wbr 5149   Or wor 5588  infcinf 9436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-po 5589  df-so 5590  df-cnv 5685  df-iota 6496  df-riota 7365  df-sup 9437  df-inf 9438
This theorem is referenced by:  infssd  31935
  Copyright terms: Public domain W3C validator