MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infnlb Structured version   Visualization version   GIF version

Theorem infnlb 8948
Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infnlb (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infnlb
StepHypRef Expression
1 infcl.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
2 infcl.2 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
31, 2infglb 8946 . . . . 5 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
43expdimp 455 . . . 4 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
5 dfrex2 3237 . . . 4 (∃𝑧𝐵 𝑧𝑅𝐶 ↔ ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶)
64, 5syl6ib 253 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ¬ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶))
76con2d 136 . 2 ((𝜑𝐶𝐴) → (∀𝑧𝐵 ¬ 𝑧𝑅𝐶 → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
87expimpd 456 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2107  wral 3136  wrex 3137   class class class wbr 5057   Or wor 5466  infcinf 8897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-po 5467  df-so 5468  df-cnv 5556  df-iota 6307  df-riota 7106  df-sup 8898  df-inf 8899
This theorem is referenced by:  infssd  30438
  Copyright terms: Public domain W3C validator