| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infnlb | Structured version Visualization version GIF version | ||
| Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Ref | Expression |
|---|---|
| infnlb | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | infcl.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 3 | 1, 2 | infglb 9442 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 4 | 3 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
| 5 | dfrex2 3056 | . . . 4 ⊢ (∃𝑧 ∈ 𝐵 𝑧𝑅𝐶 ↔ ¬ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) | |
| 6 | 4, 5 | imbitrdi 251 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ¬ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶)) |
| 7 | 6 | con2d 134 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶 → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| 8 | 7 | expimpd 453 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 Or wor 5545 infcinf 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-cnv 5646 df-iota 6464 df-riota 7344 df-sup 9393 df-inf 9394 |
| This theorem is referenced by: infssd 9445 |
| Copyright terms: Public domain | W3C validator |