Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intop Structured version   Visualization version   GIF version

Theorem intop 48120
Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intop ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)

Proof of Theorem intop
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 48116 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21elmpocl 7637 . 2 ( ∈ (𝑀 intOp 𝑁) → (𝑀 ∈ V ∧ 𝑁 ∈ V))
3 intopval 48119 . . . 4 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
43eleq2d 2815 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) ↔ ∈ (𝑁m (𝑀 × 𝑀))))
5 elmapi 8826 . . 3 ( ∈ (𝑁m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑁)
64, 5biimtrdi 253 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁))
72, 6mpcom 38 1 ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3455   × cxp 5644  wf 6515  (class class class)co 7394  m cmap 8803   intOp cintop 48113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-intop 48116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator