Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intop Structured version   Visualization version   GIF version

Theorem intop 47126
Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intop ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)

Proof of Theorem intop
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 47122 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21elmpocl 7642 . 2 ( ∈ (𝑀 intOp 𝑁) → (𝑀 ∈ V ∧ 𝑁 ∈ V))
3 intopval 47125 . . . 4 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
43eleq2d 2811 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) ↔ ∈ (𝑁m (𝑀 × 𝑀))))
5 elmapi 8840 . . 3 ( ∈ (𝑁m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑁)
64, 5syl6bi 253 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁))
72, 6mpcom 38 1 ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  Vcvv 3466   × cxp 5665  wf 6530  (class class class)co 7402  m cmap 8817   intOp cintop 47119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-map 8819  df-intop 47122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator