![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intop | Structured version Visualization version GIF version |
Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
intop | ⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop 47255 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | |
2 | 1 | elmpocl 7656 | . 2 ⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → (𝑀 ∈ V ∧ 𝑁 ∈ V)) |
3 | intopval 47258 | . . . 4 ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) | |
4 | 3 | eleq2d 2815 | . . 3 ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ⚬ ∈ (𝑀 intOp 𝑁) ↔ ⚬ ∈ (𝑁 ↑m (𝑀 × 𝑀)))) |
5 | elmapi 8861 | . . 3 ⊢ ( ⚬ ∈ (𝑁 ↑m (𝑀 × 𝑀)) → ⚬ :(𝑀 × 𝑀)⟶𝑁) | |
6 | 4, 5 | syl6bi 253 | . 2 ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁)) |
7 | 2, 6 | mpcom 38 | 1 ⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 Vcvv 3470 × cxp 5670 ⟶wf 6538 (class class class)co 7414 ↑m cmap 8838 intOp cintop 47252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-map 8840 df-intop 47255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |