MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irrednu Structured version   Visualization version   GIF version

Theorem irrednu 20345
Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irrednu.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
irrednu (𝑋𝐼 → ¬ 𝑋𝑈)

Proof of Theorem irrednu
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 irrednu.u . . 3 𝑈 = (Unit‘𝑅)
3 irredn0.i . . 3 𝐼 = (Irred‘𝑅)
4 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isirred2 20341 . 2 (𝑋𝐼 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ¬ 𝑋𝑈 ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
65simp2bi 1146 1 (𝑋𝐼 → ¬ 𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1541  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  Unitcui 20275  Irredcir 20276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-irred 20279
This theorem is referenced by:  irredn1  20346  mxidlirred  33444  rprmirredb  33504  irredminply  33750
  Copyright terms: Public domain W3C validator