| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irrednu | Structured version Visualization version GIF version | ||
| Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irrednu.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| irrednu | ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | irrednu.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20421 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 6 | 5 | simp2bi 1147 | 1 ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 Unitcui 20355 Irredcir 20356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-irred 20359 |
| This theorem is referenced by: irredn1 20426 mxidlirred 33500 rprmirredb 33560 irredminply 33757 |
| Copyright terms: Public domain | W3C validator |