MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irrednu Structured version   Visualization version   GIF version

Theorem irrednu 19947
Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irrednu.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
irrednu (𝑋𝐼 → ¬ 𝑋𝑈)

Proof of Theorem irrednu
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 irrednu.u . . 3 𝑈 = (Unit‘𝑅)
3 irredn0.i . . 3 𝐼 = (Irred‘𝑅)
4 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isirred2 19943 . 2 (𝑋𝐼 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ¬ 𝑋𝑈 ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
65simp2bi 1145 1 (𝑋𝐼 → ¬ 𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Unitcui 19881  Irredcir 19882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-irred 19885
This theorem is referenced by:  irredn1  19948
  Copyright terms: Public domain W3C validator