| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irrednu | Structured version Visualization version GIF version | ||
| Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irrednu.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| irrednu | ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | irrednu.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20341 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 Unitcui 20275 Irredcir 20276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-irred 20279 |
| This theorem is referenced by: irredn1 20346 mxidlirred 33444 rprmirredb 33504 irredminply 33750 |
| Copyright terms: Public domain | W3C validator |