| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irrednu | Structured version Visualization version GIF version | ||
| Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irrednu.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| irrednu | ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | irrednu.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20337 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Unitcui 20271 Irredcir 20272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-irred 20275 |
| This theorem is referenced by: irredn1 20342 mxidlirred 33450 rprmirredb 33510 irredminply 33713 |
| Copyright terms: Public domain | W3C validator |