![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irrednu | Structured version Visualization version GIF version |
Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | β’ πΌ = (Irredβπ ) |
irrednu.u | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
irrednu | β’ (π β πΌ β Β¬ π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | irrednu.u | . . 3 β’ π = (Unitβπ ) | |
3 | irredn0.i | . . 3 β’ πΌ = (Irredβπ ) | |
4 | eqid 2726 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
5 | 1, 2, 3, 4 | isirred2 20321 | . 2 β’ (π β πΌ β (π β (Baseβπ ) β§ Β¬ π β π β§ βπ₯ β (Baseβπ )βπ¦ β (Baseβπ )((π₯(.rβπ )π¦) = π β (π₯ β π β¨ π¦ β π)))) |
6 | 5 | simp2bi 1143 | 1 β’ (π β πΌ β Β¬ π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β¨ wo 844 = wceq 1533 β wcel 2098 βwral 3055 βcfv 6536 (class class class)co 7404 Basecbs 17151 .rcmulr 17205 Unitcui 20255 Irredcir 20256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-irred 20259 |
This theorem is referenced by: irredn1 20326 mxidlirred 33094 irredminply 33293 |
Copyright terms: Public domain | W3C validator |