MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irrednu Structured version   Visualization version   GIF version

Theorem irrednu 20325
Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irredβ€˜π‘…)
irrednu.u π‘ˆ = (Unitβ€˜π‘…)
Assertion
Ref Expression
irrednu (𝑋 ∈ 𝐼 β†’ Β¬ 𝑋 ∈ π‘ˆ)

Proof of Theorem irrednu
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2 irrednu.u . . 3 π‘ˆ = (Unitβ€˜π‘…)
3 irredn0.i . . 3 𝐼 = (Irredβ€˜π‘…)
4 eqid 2726 . . 3 (.rβ€˜π‘…) = (.rβ€˜π‘…)
51, 2, 3, 4isirred2 20321 . 2 (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (Baseβ€˜π‘…) ∧ Β¬ 𝑋 ∈ π‘ˆ ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘…)βˆ€π‘¦ ∈ (Baseβ€˜π‘…)((π‘₯(.rβ€˜π‘…)𝑦) = 𝑋 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
65simp2bi 1143 1 (𝑋 ∈ 𝐼 β†’ Β¬ 𝑋 ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∨ wo 844   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  .rcmulr 17205  Unitcui 20255  Irredcir 20256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-irred 20259
This theorem is referenced by:  irredn1  20326  mxidlirred  33094  irredminply  33293
  Copyright terms: Public domain W3C validator