MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredcl Structured version   Visualization version   GIF version

Theorem irredcl 20337
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredcl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
irredcl (𝑋𝐼𝑋𝐵)

Proof of Theorem irredcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredcl.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2731 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 irredn0.i . . 3 𝐼 = (Irred‘𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isirred2 20334 . 2 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅)))))
65simp1bi 1145 1 (𝑋𝐼𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  Basecbs 17115  .rcmulr 17157  Unitcui 20268  Irredcir 20269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-irred 20272
This theorem is referenced by:  irredrmul  20340  irredneg  20343  prmirred  21406  irrednzr  33209  rprmirredb  33489  irredminply  33721
  Copyright terms: Public domain W3C validator