| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irredcl | Structured version Visualization version GIF version | ||
| Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irredcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| irredcl | ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20330 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅))))) |
| 6 | 5 | simp1bi 1145 | 1 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Unitcui 20264 Irredcir 20265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-irred 20268 |
| This theorem is referenced by: irredrmul 20336 irredneg 20339 prmirred 21384 irrednzr 33201 rprmirredb 33503 irredminply 33706 |
| Copyright terms: Public domain | W3C validator |