Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > irredcl | Structured version Visualization version GIF version |
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredcl.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
irredcl | ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 19858 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅))))) |
6 | 5 | simp1bi 1143 | 1 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 Unitcui 19796 Irredcir 19797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-irred 19800 |
This theorem is referenced by: irredrmul 19864 irredneg 19867 prmirred 20608 |
Copyright terms: Public domain | W3C validator |