MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredcl Structured version   Visualization version   GIF version

Theorem irredcl 20333
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredcl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
irredcl (𝑋𝐼𝑋𝐵)

Proof of Theorem irredcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredcl.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2729 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
3 irredn0.i . . 3 𝐼 = (Irred‘𝑅)
4 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isirred2 20330 . 2 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅)))))
65simp1bi 1145 1 (𝑋𝐼𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  Unitcui 20264  Irredcir 20265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-irred 20268
This theorem is referenced by:  irredrmul  20336  irredneg  20339  prmirred  21384  irrednzr  33201  rprmirredb  33503  irredminply  33706
  Copyright terms: Public domain W3C validator