![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredcl | Structured version Visualization version GIF version |
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredcl.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
irredcl | ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2733 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 20224 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅))))) |
6 | 5 | simp1bi 1146 | 1 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 .rcmulr 17194 Unitcui 20158 Irredcir 20159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7407 df-irred 20162 |
This theorem is referenced by: irredrmul 20230 irredneg 20233 prmirred 21028 |
Copyright terms: Public domain | W3C validator |