MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredcl Structured version   Visualization version   GIF version

Theorem irredcl 20370
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irredβ€˜π‘…)
irredcl.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
irredcl (𝑋 ∈ 𝐼 β†’ 𝑋 ∈ 𝐡)

Proof of Theorem irredcl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredcl.b . . 3 𝐡 = (Baseβ€˜π‘…)
2 eqid 2728 . . 3 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
3 irredn0.i . . 3 𝐼 = (Irredβ€˜π‘…)
4 eqid 2728 . . 3 (.rβ€˜π‘…) = (.rβ€˜π‘…)
51, 2, 3, 4isirred2 20367 . 2 (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ∈ (Unitβ€˜π‘…) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯(.rβ€˜π‘…)𝑦) = 𝑋 β†’ (π‘₯ ∈ (Unitβ€˜π‘…) ∨ 𝑦 ∈ (Unitβ€˜π‘…)))))
65simp1bi 1142 1 (𝑋 ∈ 𝐼 β†’ 𝑋 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∨ wo 845   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  .rcmulr 17241  Unitcui 20301  Irredcir 20302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-irred 20305
This theorem is referenced by:  irredrmul  20373  irredneg  20376  prmirred  21407  irrednzr  32968  rprmirredb  33271  irredminply  33417
  Copyright terms: Public domain W3C validator