| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > irredcl | Structured version Visualization version GIF version | ||
| Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
| irredcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| irredcl | ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2733 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isirred2 20348 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅))))) |
| 6 | 5 | simp1bi 1145 | 1 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 .rcmulr 17169 Unitcui 20282 Irredcir 20283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-irred 20286 |
| This theorem is referenced by: irredrmul 20354 irredneg 20357 prmirred 21420 irrednzr 33260 rprmirredb 33541 irredminply 33801 |
| Copyright terms: Public domain | W3C validator |