![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | β’ πΉ = (Scalarβπ) |
cphsca.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
cphsqrtcl | β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄)) β (ββπ΄) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtf 15309 | . . . 4 β’ β:ββΆβ | |
2 | ffn 6717 | . . . 4 β’ (β:ββΆβ β β Fn β) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ β Fn β |
4 | inss2 4229 | . . . 4 β’ (πΎ β© (0[,)+β)) β (0[,)+β) | |
5 | rge0ssre 13432 | . . . . 5 β’ (0[,)+β) β β | |
6 | ax-resscn 11166 | . . . . 5 β’ β β β | |
7 | 5, 6 | sstri 3991 | . . . 4 β’ (0[,)+β) β β |
8 | 4, 7 | sstri 3991 | . . 3 β’ (πΎ β© (0[,)+β)) β β |
9 | simp1 1136 | . . . 4 β’ ((π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄) β π΄ β πΎ) | |
10 | elrege0 13430 | . . . . . 6 β’ (π΄ β (0[,)+β) β (π΄ β β β§ 0 β€ π΄)) | |
11 | 10 | biimpri 227 | . . . . 5 β’ ((π΄ β β β§ 0 β€ π΄) β π΄ β (0[,)+β)) |
12 | 11 | 3adant1 1130 | . . . 4 β’ ((π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄) β π΄ β (0[,)+β)) |
13 | 9, 12 | elind 4194 | . . 3 β’ ((π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄) β π΄ β (πΎ β© (0[,)+β))) |
14 | fnfvima 7234 | . . 3 β’ ((β Fn β β§ (πΎ β© (0[,)+β)) β β β§ π΄ β (πΎ β© (0[,)+β))) β (ββπ΄) β (β β (πΎ β© (0[,)+β)))) | |
15 | 3, 8, 13, 14 | mp3an12i 1465 | . 2 β’ ((π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄) β (ββπ΄) β (β β (πΎ β© (0[,)+β)))) |
16 | eqid 2732 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
17 | eqid 2732 | . . . . 5 β’ (Β·πβπ) = (Β·πβπ) | |
18 | eqid 2732 | . . . . 5 β’ (normβπ) = (normβπ) | |
19 | cphsca.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
20 | cphsca.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
21 | 16, 17, 18, 19, 20 | iscph 24686 | . . . 4 β’ (π β βPreHil β ((π β PreHil β§ π β NrmMod β§ πΉ = (βfld βΎs πΎ)) β§ (β β (πΎ β© (0[,)+β))) β πΎ β§ (normβπ) = (π₯ β (Baseβπ) β¦ (ββ(π₯(Β·πβπ)π₯))))) |
22 | 21 | simp2bi 1146 | . . 3 β’ (π β βPreHil β (β β (πΎ β© (0[,)+β))) β πΎ) |
23 | 22 | sselda 3982 | . 2 β’ ((π β βPreHil β§ (ββπ΄) β (β β (πΎ β© (0[,)+β)))) β (ββπ΄) β πΎ) |
24 | 15, 23 | sylan2 593 | 1 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΄ β β β§ 0 β€ π΄)) β (ββπ΄) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β© cin 3947 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 β cima 5679 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 0cc0 11109 +βcpnf 11244 β€ cle 11248 [,)cico 13325 βcsqrt 15179 Basecbs 17143 βΎs cress 17172 Scalarcsca 17199 Β·πcip 17201 βfldccnfld 20943 PreHilcphl 21176 normcnm 24084 NrmModcnlm 24088 βPreHilccph 24682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-ico 13329 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-cph 24684 |
This theorem is referenced by: cphabscl 24701 cphsqrtcl2 24702 cphsqrtcl3 24703 cphnmf 24711 ipcau 24754 cphsscph 24767 |
Copyright terms: Public domain | W3C validator |