| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version | ||
| Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtf 15275 | . . . 4 ⊢ √:ℂ⟶ℂ | |
| 2 | ffn 6658 | . . . 4 ⊢ (√:ℂ⟶ℂ → √ Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ √ Fn ℂ |
| 4 | inss2 4187 | . . . 4 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞) | |
| 5 | rge0ssre 13360 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 6 | ax-resscn 11072 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3940 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 8 | 4, 7 | sstri 3940 | . . 3 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ |
| 9 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ 𝐾) | |
| 10 | elrege0 13358 | . . . . . 6 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
| 11 | 10 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 13 | 9, 12 | elind 4149 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) |
| 14 | fnfvima 7175 | . . 3 ⊢ ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) | |
| 15 | 3, 8, 13, 14 | mp3an12i 1467 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) |
| 16 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 18 | eqid 2733 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 19 | cphsca.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 20 | cphsca.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 21 | 16, 17, 18, 19, 20 | iscph 25100 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 22 | 21 | simp2bi 1146 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾) |
| 23 | 22 | sselda 3930 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾) |
| 24 | 15, 23 | sylan2 593 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 “ cima 5624 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 +∞cpnf 11152 ≤ cle 11156 [,)cico 13251 √csqrt 15144 Basecbs 17124 ↾s cress 17145 Scalarcsca 17168 ·𝑖cip 17170 ℂfldccnfld 21295 PreHilcphl 21565 normcnm 24494 NrmModcnlm 24498 ℂPreHilccph 25096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-ico 13255 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-cph 25098 |
| This theorem is referenced by: cphabscl 25115 cphsqrtcl2 25116 cphsqrtcl3 25117 cphnmf 25125 ipcau 25168 cphsscph 25181 |
| Copyright terms: Public domain | W3C validator |