MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl Structured version   Visualization version   GIF version

Theorem cphsqrtcl 23790
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sqrtf 14725 . . . 4 √:ℂ⟶ℂ
2 ffn 6516 . . . 4 (√:ℂ⟶ℂ → √ Fn ℂ)
31, 2ax-mp 5 . . 3 √ Fn ℂ
4 inss2 4208 . . . 4 (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞)
5 rge0ssre 12847 . . . . 5 (0[,)+∞) ⊆ ℝ
6 ax-resscn 10596 . . . . 5 ℝ ⊆ ℂ
75, 6sstri 3978 . . . 4 (0[,)+∞) ⊆ ℂ
84, 7sstri 3978 . . 3 (𝐾 ∩ (0[,)+∞)) ⊆ ℂ
9 simp1 1132 . . . 4 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴𝐾)
10 elrege0 12845 . . . . . 6 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
1110biimpri 230 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞))
12113adant1 1126 . . . 4 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞))
139, 12elind 4173 . . 3 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞)))
14 fnfvima 6997 . . 3 ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞))))
153, 8, 13, 14mp3an12i 1461 . 2 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞))))
16 eqid 2823 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
17 eqid 2823 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
18 eqid 2823 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
19 cphsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
20 cphsca.k . . . . 5 𝐾 = (Base‘𝐹)
2116, 17, 18, 19, 20iscph 23776 . . . 4 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
2221simp2bi 1142 . . 3 (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾)
2322sselda 3969 . 2 ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾)
2415, 23sylan2 594 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3937  wss 3938   class class class wbr 5068  cmpt 5148  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  +∞cpnf 10674  cle 10678  [,)cico 12743  csqrt 14594  Basecbs 16485  s cress 16486  Scalarcsca 16570  ·𝑖cip 16572  fldccnfld 20547  PreHilcphl 20770  normcnm 23188  NrmModcnlm 23192  ℂPreHilccph 23772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-cph 23774
This theorem is referenced by:  cphabscl  23791  cphsqrtcl2  23792  cphsqrtcl3  23793  cphnmf  23801  ipcau  23843  cphsscph  23856
  Copyright terms: Public domain W3C validator