MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl Structured version   Visualization version   GIF version

Theorem cphsqrtcl 25091
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sqrtf 15337 . . . 4 √:ℂ⟶ℂ
2 ffn 6691 . . . 4 (√:ℂ⟶ℂ → √ Fn ℂ)
31, 2ax-mp 5 . . 3 √ Fn ℂ
4 inss2 4204 . . . 4 (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞)
5 rge0ssre 13424 . . . . 5 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
75, 6sstri 3959 . . . 4 (0[,)+∞) ⊆ ℂ
84, 7sstri 3959 . . 3 (𝐾 ∩ (0[,)+∞)) ⊆ ℂ
9 simp1 1136 . . . 4 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴𝐾)
10 elrege0 13422 . . . . . 6 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
1110biimpri 228 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞))
12113adant1 1130 . . . 4 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞))
139, 12elind 4166 . . 3 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞)))
14 fnfvima 7210 . . 3 ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞))))
153, 8, 13, 14mp3an12i 1467 . 2 ((𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞))))
16 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
17 eqid 2730 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
18 eqid 2730 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
19 cphsca.f . . . . 5 𝐹 = (Scalar‘𝑊)
20 cphsca.k . . . . 5 𝐾 = (Base‘𝐹)
2116, 17, 18, 19, 20iscph 25077 . . . 4 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
2221simp2bi 1146 . . 3 (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾)
2322sselda 3949 . 2 ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾)
2415, 23sylan2 593 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  wss 3917   class class class wbr 5110  cmpt 5191  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  +∞cpnf 11212  cle 11216  [,)cico 13315  csqrt 15206  Basecbs 17186  s cress 17207  Scalarcsca 17230  ·𝑖cip 17232  fldccnfld 21271  PreHilcphl 21540  normcnm 24471  NrmModcnlm 24475  ℂPreHilccph 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-cph 25075
This theorem is referenced by:  cphabscl  25092  cphsqrtcl2  25093  cphsqrtcl3  25094  cphnmf  25102  ipcau  25145  cphsscph  25158
  Copyright terms: Public domain W3C validator