| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version | ||
| Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtf 15271 | . . . 4 ⊢ √:ℂ⟶ℂ | |
| 2 | ffn 6651 | . . . 4 ⊢ (√:ℂ⟶ℂ → √ Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ √ Fn ℂ |
| 4 | inss2 4188 | . . . 4 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞) | |
| 5 | rge0ssre 13356 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 6 | ax-resscn 11063 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3944 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 8 | 4, 7 | sstri 3944 | . . 3 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ |
| 9 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ 𝐾) | |
| 10 | elrege0 13354 | . . . . . 6 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
| 11 | 10 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 13 | 9, 12 | elind 4150 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) |
| 14 | fnfvima 7167 | . . 3 ⊢ ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) | |
| 15 | 3, 8, 13, 14 | mp3an12i 1467 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) |
| 16 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 18 | eqid 2731 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 19 | cphsca.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 20 | cphsca.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 21 | 16, 17, 18, 19, 20 | iscph 25098 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 22 | 21 | simp2bi 1146 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾) |
| 23 | 22 | sselda 3934 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾) |
| 24 | 15, 23 | sylan2 593 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 “ cima 5619 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 √csqrt 15140 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ·𝑖cip 17166 ℂfldccnfld 21292 PreHilcphl 21562 normcnm 24492 NrmModcnlm 24496 ℂPreHilccph 25094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-cph 25096 |
| This theorem is referenced by: cphabscl 25113 cphsqrtcl2 25114 cphsqrtcl3 25115 cphnmf 25123 ipcau 25166 cphsscph 25179 |
| Copyright terms: Public domain | W3C validator |