| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version | ||
| Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphsqrtcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtf 15330 | . . . 4 ⊢ √:ℂ⟶ℂ | |
| 2 | ffn 6688 | . . . 4 ⊢ (√:ℂ⟶ℂ → √ Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ √ Fn ℂ |
| 4 | inss2 4201 | . . . 4 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞) | |
| 5 | rge0ssre 13417 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 6 | ax-resscn 11125 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstri 3956 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 8 | 4, 7 | sstri 3956 | . . 3 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ |
| 9 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ 𝐾) | |
| 10 | elrege0 13415 | . . . . . 6 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
| 11 | 10 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
| 13 | 9, 12 | elind 4163 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) |
| 14 | fnfvima 7207 | . . 3 ⊢ ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) | |
| 15 | 3, 8, 13, 14 | mp3an12i 1467 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) |
| 16 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 18 | eqid 2729 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 19 | cphsca.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 20 | cphsca.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 21 | 16, 17, 18, 19, 20 | iscph 25070 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 22 | 21 | simp2bi 1146 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾) |
| 23 | 22 | sselda 3946 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾) |
| 24 | 15, 23 | sylan2 593 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ≤ cle 11209 [,)cico 13308 √csqrt 15199 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 ·𝑖cip 17225 ℂfldccnfld 21264 PreHilcphl 21533 normcnm 24464 NrmModcnlm 24468 ℂPreHilccph 25066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-cph 25068 |
| This theorem is referenced by: cphabscl 25085 cphsqrtcl2 25086 cphsqrtcl3 25087 cphnmf 25095 ipcau 25138 cphsscph 25151 |
| Copyright terms: Public domain | W3C validator |