Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsqrtcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtf 15003 | . . . 4 ⊢ √:ℂ⟶ℂ | |
2 | ffn 6584 | . . . 4 ⊢ (√:ℂ⟶ℂ → √ Fn ℂ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ √ Fn ℂ |
4 | inss2 4160 | . . . 4 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞) | |
5 | rge0ssre 13117 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
6 | ax-resscn 10859 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 3926 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
8 | 4, 7 | sstri 3926 | . . 3 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ |
9 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ 𝐾) | |
10 | elrege0 13115 | . . . . . 6 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
11 | 10 | biimpri 227 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
12 | 11 | 3adant1 1128 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
13 | 9, 12 | elind 4124 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) |
14 | fnfvima 7091 | . . 3 ⊢ ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) | |
15 | 3, 8, 13, 14 | mp3an12i 1463 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) |
16 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | eqid 2738 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
18 | eqid 2738 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
19 | cphsca.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
20 | cphsca.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
21 | 16, 17, 18, 19, 20 | iscph 24239 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
22 | 21 | simp2bi 1144 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾) |
23 | 22 | sselda 3917 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾) |
24 | 15, 23 | sylan2 592 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 √csqrt 14872 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 ·𝑖cip 16893 ℂfldccnfld 20510 PreHilcphl 20741 normcnm 23638 NrmModcnlm 23642 ℂPreHilccph 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-cph 24237 |
This theorem is referenced by: cphabscl 24254 cphsqrtcl2 24255 cphsqrtcl3 24256 cphnmf 24264 ipcau 24307 cphsscph 24320 |
Copyright terms: Public domain | W3C validator |