![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsqrtcl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsqrtcl | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtf 15412 | . . . 4 ⊢ √:ℂ⟶ℂ | |
2 | ffn 6747 | . . . 4 ⊢ (√:ℂ⟶ℂ → √ Fn ℂ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ √ Fn ℂ |
4 | inss2 4259 | . . . 4 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ (0[,)+∞) | |
5 | rge0ssre 13516 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
6 | ax-resscn 11241 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 4018 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
8 | 4, 7 | sstri 4018 | . . 3 ⊢ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ |
9 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ 𝐾) | |
10 | elrege0 13514 | . . . . . 6 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
11 | 10 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,)+∞)) |
13 | 9, 12 | elind 4223 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) |
14 | fnfvima 7270 | . . 3 ⊢ ((√ Fn ℂ ∧ (𝐾 ∩ (0[,)+∞)) ⊆ ℂ ∧ 𝐴 ∈ (𝐾 ∩ (0[,)+∞))) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) | |
15 | 3, 8, 13, 14 | mp3an12i 1465 | . 2 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) |
16 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | eqid 2740 | . . . . 5 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
18 | eqid 2740 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
19 | cphsca.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
20 | cphsca.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
21 | 16, 17, 18, 19, 20 | iscph 25223 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
22 | 21 | simp2bi 1146 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾) |
23 | 22 | sselda 4008 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (√‘𝐴) ∈ (√ “ (𝐾 ∩ (0[,)+∞)))) → (√‘𝐴) ∈ 𝐾) |
24 | 15, 23 | sylan2 592 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 √csqrt 15282 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 ·𝑖cip 17316 ℂfldccnfld 21387 PreHilcphl 21665 normcnm 24610 NrmModcnlm 24614 ℂPreHilccph 25219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-cph 25221 |
This theorem is referenced by: cphabscl 25238 cphsqrtcl2 25239 cphsqrtcl3 25240 cphnmf 25248 ipcau 25291 cphsscph 25304 |
Copyright terms: Public domain | W3C validator |