| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnllysconn | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| cnllysconn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnllysconn | ⊢ 𝐽 ∈ Locally SConn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnllysconn.j | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtop 24704 | . 2 ⊢ 𝐽 ∈ Top |
| 3 | cnxmet 24693 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 4 | 1 | cnfldtopn 24702 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 5 | 4 | mopni2 24414 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 6 | 3, 5 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 7 | 3 | a1i 11 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
| 8 | 1 | cnfldtopon 24703 | . . . . . . . . 9 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 9 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ∈ 𝐽) | |
| 10 | toponss 22847 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ ℂ) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ) |
| 12 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ 𝑥) | |
| 13 | 11, 12 | sseldd 3944 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ) |
| 14 | rpxr 12937 | . . . . . . . 8 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ*) | |
| 15 | 14 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*) |
| 16 | 4 | blopn 24421 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
| 17 | 7, 13, 15, 16 | syl3anc 1373 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
| 18 | simprr 772 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) | |
| 19 | vex 3448 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 20 | 19 | elpw2 5284 | . . . . . . 7 ⊢ ((𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥 ↔ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 21 | 18, 20 | sylibr 234 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥) |
| 22 | 17, 21 | elind 4159 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥)) |
| 23 | simprl 770 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ+) | |
| 24 | blcntr 24334 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) | |
| 25 | 7, 13, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (𝑦(ball‘(abs ∘ − ))𝑟) = (𝑦(ball‘(abs ∘ − ))𝑟) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) | |
| 28 | 1, 26, 27 | blsconn 35224 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
| 29 | 13, 15, 28 | syl2anc 584 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
| 30 | eleq2 2817 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))) | |
| 31 | oveq2 7377 | . . . . . . . 8 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝐽 ↾t 𝑢) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟))) | |
| 32 | 31 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝐽 ↾t 𝑢) ∈ SConn ↔ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) |
| 33 | 30, 32 | anbi12d 632 | . . . . . 6 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) ↔ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn))) |
| 34 | 33 | rspcev 3585 | . . . . 5 ⊢ (((𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 35 | 22, 25, 29, 34 | syl12anc 836 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 36 | 6, 35 | rexlimddv 3140 | . . 3 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 37 | 36 | rgen2 3175 | . 2 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) |
| 38 | islly 23388 | . 2 ⊢ (𝐽 ∈ Locally SConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn))) | |
| 39 | 2, 37, 38 | mpbir2an 711 | 1 ⊢ 𝐽 ∈ Locally SConn |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝ*cxr 11183 − cmin 11381 ℝ+crp 12927 abscabs 15176 ↾t crest 17359 TopOpenctopn 17360 ∞Metcxmet 21281 ballcbl 21283 ℂfldccnfld 21296 Topctop 22813 TopOnctopon 22830 Locally clly 23384 SConncsconn 35200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cn 23147 df-cnp 23148 df-lly 23386 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-ii 24803 df-cncf 24804 df-htpy 24902 df-phtpy 24903 df-phtpc 24924 df-pconn 35201 df-sconn 35202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |