Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnllysconn | Structured version Visualization version GIF version |
Description: The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
cnllysconn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnllysconn | ⊢ 𝐽 ∈ Locally SConn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnllysconn.j | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtop 23947 | . 2 ⊢ 𝐽 ∈ Top |
3 | cnxmet 23936 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
4 | 1 | cnfldtopn 23945 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
5 | 4 | mopni2 23649 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
6 | 3, 5 | mp3an1 1447 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
7 | 3 | a1i 11 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
8 | 1 | cnfldtopon 23946 | . . . . . . . . 9 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
9 | simpll 764 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ∈ 𝐽) | |
10 | toponss 22076 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ ℂ) | |
11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ) |
12 | simplr 766 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ 𝑥) | |
13 | 11, 12 | sseldd 3922 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ) |
14 | rpxr 12739 | . . . . . . . 8 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ*) | |
15 | 14 | ad2antrl 725 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*) |
16 | 4 | blopn 23656 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
17 | 7, 13, 15, 16 | syl3anc 1370 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
18 | simprr 770 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) | |
19 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
20 | 19 | elpw2 5269 | . . . . . . 7 ⊢ ((𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥 ↔ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
21 | 18, 20 | sylibr 233 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥) |
22 | 17, 21 | elind 4128 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥)) |
23 | simprl 768 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ+) | |
24 | blcntr 23566 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) | |
25 | 7, 13, 23, 24 | syl3anc 1370 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) |
26 | eqid 2738 | . . . . . . 7 ⊢ (𝑦(ball‘(abs ∘ − ))𝑟) = (𝑦(ball‘(abs ∘ − ))𝑟) | |
27 | eqid 2738 | . . . . . . 7 ⊢ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) | |
28 | 1, 26, 27 | blsconn 33206 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
29 | 13, 15, 28 | syl2anc 584 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
30 | eleq2 2827 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))) | |
31 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝐽 ↾t 𝑢) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟))) | |
32 | 31 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝐽 ↾t 𝑢) ∈ SConn ↔ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) |
33 | 30, 32 | anbi12d 631 | . . . . . 6 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) ↔ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn))) |
34 | 33 | rspcev 3561 | . . . . 5 ⊢ (((𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
35 | 22, 25, 29, 34 | syl12anc 834 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
36 | 6, 35 | rexlimddv 3220 | . . 3 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
37 | 36 | rgen2 3120 | . 2 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) |
38 | islly 22619 | . 2 ⊢ (𝐽 ∈ Locally SConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn))) | |
39 | 2, 37, 38 | mpbir2an 708 | 1 ⊢ 𝐽 ∈ Locally SConn |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝ*cxr 11008 − cmin 11205 ℝ+crp 12730 abscabs 14945 ↾t crest 17131 TopOpenctopn 17132 ∞Metcxmet 20582 ballcbl 20584 ℂfldccnfld 20597 Topctop 22042 TopOnctopon 22059 Locally clly 22615 SConncsconn 33182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-lly 22617 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-ii 24040 df-htpy 24133 df-phtpy 24134 df-phtpc 24155 df-pconn 33183 df-sconn 33184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |