Step | Hyp | Ref
| Expression |
1 | | cnllysconn.j |
. . 3
β’ π½ =
(TopOpenββfld) |
2 | 1 | cnfldtop 24299 |
. 2
β’ π½ β Top |
3 | | cnxmet 24288 |
. . . . 5
β’ (abs
β β ) β (βMetββ) |
4 | 1 | cnfldtopn 24297 |
. . . . . 6
β’ π½ = (MetOpenβ(abs β
β )) |
5 | 4 | mopni2 24001 |
. . . . 5
β’ (((abs
β β ) β (βMetββ) β§ π₯ β π½ β§ π¦ β π₯) β βπ β β+ (π¦(ballβ(abs β β
))π) β π₯) |
6 | 3, 5 | mp3an1 1448 |
. . . 4
β’ ((π₯ β π½ β§ π¦ β π₯) β βπ β β+ (π¦(ballβ(abs β β
))π) β π₯) |
7 | 3 | a1i 11 |
. . . . . . 7
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (abs β β )
β (βMetββ)) |
8 | 1 | cnfldtopon 24298 |
. . . . . . . . 9
β’ π½ β
(TopOnββ) |
9 | | simpll 765 |
. . . . . . . . 9
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π₯ β π½) |
10 | | toponss 22428 |
. . . . . . . . 9
β’ ((π½ β (TopOnββ)
β§ π₯ β π½) β π₯ β β) |
11 | 8, 9, 10 | sylancr 587 |
. . . . . . . 8
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π₯ β β) |
12 | | simplr 767 |
. . . . . . . 8
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π¦ β π₯) |
13 | 11, 12 | sseldd 3983 |
. . . . . . 7
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π¦ β β) |
14 | | rpxr 12982 |
. . . . . . . 8
β’ (π β β+
β π β
β*) |
15 | 14 | ad2antrl 726 |
. . . . . . 7
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π β β*) |
16 | 4 | blopn 24008 |
. . . . . . 7
β’ (((abs
β β ) β (βMetββ) β§ π¦ β β β§ π β β*) β (π¦(ballβ(abs β β
))π) β π½) |
17 | 7, 13, 15, 16 | syl3anc 1371 |
. . . . . 6
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (π¦(ballβ(abs β β ))π) β π½) |
18 | | simprr 771 |
. . . . . . 7
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (π¦(ballβ(abs β β ))π) β π₯) |
19 | | vex 3478 |
. . . . . . . 8
β’ π₯ β V |
20 | 19 | elpw2 5345 |
. . . . . . 7
β’ ((π¦(ballβ(abs β β
))π) β π« π₯ β (π¦(ballβ(abs β β ))π) β π₯) |
21 | 18, 20 | sylibr 233 |
. . . . . 6
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (π¦(ballβ(abs β β ))π) β π« π₯) |
22 | 17, 21 | elind 4194 |
. . . . 5
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (π¦(ballβ(abs β β ))π) β (π½ β© π« π₯)) |
23 | | simprl 769 |
. . . . . 6
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π β β+) |
24 | | blcntr 23918 |
. . . . . 6
β’ (((abs
β β ) β (βMetββ) β§ π¦ β β β§ π β β+) β π¦ β (π¦(ballβ(abs β β ))π)) |
25 | 7, 13, 23, 24 | syl3anc 1371 |
. . . . 5
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β π¦ β (π¦(ballβ(abs β β ))π)) |
26 | | eqid 2732 |
. . . . . . 7
β’ (π¦(ballβ(abs β β
))π) = (π¦(ballβ(abs β β ))π) |
27 | | eqid 2732 |
. . . . . . 7
β’ (π½ βΎt (π¦(ballβ(abs β β
))π)) = (π½ βΎt (π¦(ballβ(abs β β ))π)) |
28 | 1, 26, 27 | blsconn 34230 |
. . . . . 6
β’ ((π¦ β β β§ π β β*)
β (π½
βΎt (π¦(ballβ(abs β β ))π)) β
SConn) |
29 | 13, 15, 28 | syl2anc 584 |
. . . . 5
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β (π½ βΎt (π¦(ballβ(abs β β ))π)) β
SConn) |
30 | | eleq2 2822 |
. . . . . . 7
β’ (π’ = (π¦(ballβ(abs β β ))π) β (π¦ β π’ β π¦ β (π¦(ballβ(abs β β ))π))) |
31 | | oveq2 7416 |
. . . . . . . 8
β’ (π’ = (π¦(ballβ(abs β β ))π) β (π½ βΎt π’) = (π½ βΎt (π¦(ballβ(abs β β ))π))) |
32 | 31 | eleq1d 2818 |
. . . . . . 7
β’ (π’ = (π¦(ballβ(abs β β ))π) β ((π½ βΎt π’) β SConn β (π½ βΎt (π¦(ballβ(abs β β ))π)) β
SConn)) |
33 | 30, 32 | anbi12d 631 |
. . . . . 6
β’ (π’ = (π¦(ballβ(abs β β ))π) β ((π¦ β π’ β§ (π½ βΎt π’) β SConn) β (π¦ β (π¦(ballβ(abs β β ))π) β§ (π½ βΎt (π¦(ballβ(abs β β ))π)) β
SConn))) |
34 | 33 | rspcev 3612 |
. . . . 5
β’ (((π¦(ballβ(abs β β
))π) β (π½ β© π« π₯) β§ (π¦ β (π¦(ballβ(abs β β ))π) β§ (π½ βΎt (π¦(ballβ(abs β β ))π)) β SConn)) β
βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β SConn)) |
35 | 22, 25, 29, 34 | syl12anc 835 |
. . . 4
β’ (((π₯ β π½ β§ π¦ β π₯) β§ (π β β+ β§ (π¦(ballβ(abs β β
))π) β π₯)) β βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β SConn)) |
36 | 6, 35 | rexlimddv 3161 |
. . 3
β’ ((π₯ β π½ β§ π¦ β π₯) β βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β SConn)) |
37 | 36 | rgen2 3197 |
. 2
β’
βπ₯ β
π½ βπ¦ β π₯ βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β SConn) |
38 | | islly 22971 |
. 2
β’ (π½ β Locally SConn β
(π½ β Top β§
βπ₯ β π½ βπ¦ β π₯ βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β SConn))) |
39 | 2, 37, 38 | mpbir2an 709 |
1
β’ π½ β Locally
SConn |