| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnllysconn | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| cnllysconn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnllysconn | ⊢ 𝐽 ∈ Locally SConn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnllysconn.j | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtop 24722 | . 2 ⊢ 𝐽 ∈ Top |
| 3 | cnxmet 24711 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 4 | 1 | cnfldtopn 24720 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 5 | 4 | mopni2 24432 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 6 | 3, 5 | mp3an1 1450 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 7 | 3 | a1i 11 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
| 8 | 1 | cnfldtopon 24721 | . . . . . . . . 9 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 9 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ∈ 𝐽) | |
| 10 | toponss 22865 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ ℂ) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ) |
| 12 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ 𝑥) | |
| 13 | 11, 12 | sseldd 3959 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ) |
| 14 | rpxr 13018 | . . . . . . . 8 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ*) | |
| 15 | 14 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*) |
| 16 | 4 | blopn 24439 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
| 17 | 7, 13, 15, 16 | syl3anc 1373 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
| 18 | simprr 772 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) | |
| 19 | vex 3463 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 20 | 19 | elpw2 5304 | . . . . . . 7 ⊢ ((𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥 ↔ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
| 21 | 18, 20 | sylibr 234 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥) |
| 22 | 17, 21 | elind 4175 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥)) |
| 23 | simprl 770 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ+) | |
| 24 | blcntr 24352 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) | |
| 25 | 7, 13, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) |
| 26 | eqid 2735 | . . . . . . 7 ⊢ (𝑦(ball‘(abs ∘ − ))𝑟) = (𝑦(ball‘(abs ∘ − ))𝑟) | |
| 27 | eqid 2735 | . . . . . . 7 ⊢ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) | |
| 28 | 1, 26, 27 | blsconn 35266 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
| 29 | 13, 15, 28 | syl2anc 584 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
| 30 | eleq2 2823 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))) | |
| 31 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝐽 ↾t 𝑢) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟))) | |
| 32 | 31 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝐽 ↾t 𝑢) ∈ SConn ↔ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) |
| 33 | 30, 32 | anbi12d 632 | . . . . . 6 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) ↔ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn))) |
| 34 | 33 | rspcev 3601 | . . . . 5 ⊢ (((𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 35 | 22, 25, 29, 34 | syl12anc 836 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 36 | 6, 35 | rexlimddv 3147 | . . 3 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
| 37 | 36 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) |
| 38 | islly 23406 | . 2 ⊢ (𝐽 ∈ Locally SConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn))) | |
| 39 | 2, 37, 38 | mpbir2an 711 | 1 ⊢ 𝐽 ∈ Locally SConn |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝ*cxr 11268 − cmin 11466 ℝ+crp 13008 abscabs 15253 ↾t crest 17434 TopOpenctopn 17435 ∞Metcxmet 21300 ballcbl 21302 ℂfldccnfld 21315 Topctop 22831 TopOnctopon 22848 Locally clly 23402 SConncsconn 35242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-lly 23404 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-ii 24821 df-cncf 24822 df-htpy 24920 df-phtpy 24921 df-phtpc 24942 df-pconn 35243 df-sconn 35244 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |