![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnllysconn | Structured version Visualization version GIF version |
Description: The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
cnllysconn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnllysconn | ⊢ 𝐽 ∈ Locally SConn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnllysconn.j | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtop 24622 | . 2 ⊢ 𝐽 ∈ Top |
3 | cnxmet 24611 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
4 | 1 | cnfldtopn 24620 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
5 | 4 | mopni2 24324 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
6 | 3, 5 | mp3an1 1444 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
7 | 3 | a1i 11 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
8 | 1 | cnfldtopon 24621 | . . . . . . . . 9 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
9 | simpll 764 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ∈ 𝐽) | |
10 | toponss 22751 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ ℂ) | |
11 | 8, 9, 10 | sylancr 586 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ) |
12 | simplr 766 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ 𝑥) | |
13 | 11, 12 | sseldd 3975 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ) |
14 | rpxr 12980 | . . . . . . . 8 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ*) | |
15 | 14 | ad2antrl 725 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*) |
16 | 4 | blopn 24331 | . . . . . . 7 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
17 | 7, 13, 15, 16 | syl3anc 1368 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽) |
18 | simprr 770 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) | |
19 | vex 3470 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
20 | 19 | elpw2 5335 | . . . . . . 7 ⊢ ((𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥 ↔ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥) |
21 | 18, 20 | sylibr 233 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥) |
22 | 17, 21 | elind 4186 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥)) |
23 | simprl 768 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ+) | |
24 | blcntr 24241 | . . . . . 6 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) | |
25 | 7, 13, 23, 24 | syl3anc 1368 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)) |
26 | eqid 2724 | . . . . . . 7 ⊢ (𝑦(ball‘(abs ∘ − ))𝑟) = (𝑦(ball‘(abs ∘ − ))𝑟) | |
27 | eqid 2724 | . . . . . . 7 ⊢ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) | |
28 | 1, 26, 27 | blsconn 34724 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
29 | 13, 15, 28 | syl2anc 583 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn) |
30 | eleq2 2814 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))) | |
31 | oveq2 7409 | . . . . . . . 8 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝐽 ↾t 𝑢) = (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟))) | |
32 | 31 | eleq1d 2810 | . . . . . . 7 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝐽 ↾t 𝑢) ∈ SConn ↔ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) |
33 | 30, 32 | anbi12d 630 | . . . . . 6 ⊢ (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) ↔ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn))) |
34 | 33 | rspcev 3604 | . . . . 5 ⊢ (((𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽 ↾t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
35 | 22, 25, 29, 34 | syl12anc 834 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
36 | 6, 35 | rexlimddv 3153 | . . 3 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn)) |
37 | 36 | rgen2 3189 | . 2 ⊢ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn) |
38 | islly 23294 | . 2 ⊢ (𝐽 ∈ Locally SConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ SConn))) | |
39 | 2, 37, 38 | mpbir2an 708 | 1 ⊢ 𝐽 ∈ Locally SConn |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∩ cin 3939 ⊆ wss 3940 𝒫 cpw 4594 ∘ ccom 5670 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 ℝ*cxr 11244 − cmin 11441 ℝ+crp 12971 abscabs 15178 ↾t crest 17365 TopOpenctopn 17366 ∞Metcxmet 21213 ballcbl 21215 ℂfldccnfld 21228 Topctop 22717 TopOnctopon 22734 Locally clly 23290 SConncsconn 34700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-icc 13328 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cn 23053 df-cnp 23054 df-lly 23292 df-tx 23388 df-hmeo 23581 df-xms 24148 df-ms 24149 df-tms 24150 df-ii 24719 df-cncf 24720 df-htpy 24818 df-phtpy 24819 df-phtpc 24840 df-pconn 34701 df-sconn 34702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |