| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rellysconn | Structured version Visualization version GIF version | ||
| Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| rellysconn | ⊢ (topGen‘ran (,)) ∈ Locally SConn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24705 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | tg2 22908 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ ran (,)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) | |
| 3 | retopbas 24704 | . . . . . . . . . 10 ⊢ ran (,) ∈ TopBases | |
| 4 | bastg 22909 | . . . . . . . . . 10 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 6 | simprl 770 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ ran (,)) | |
| 7 | 5, 6 | sselid 3961 | . . . . . . . 8 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ (topGen‘ran (,))) |
| 8 | simprrr 781 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ⊆ 𝑥) | |
| 9 | velpw 4585 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥) | |
| 10 | 8, 9 | sylibr 234 | . . . . . . . 8 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ 𝒫 𝑥) |
| 11 | 7, 10 | elind 4180 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)) |
| 12 | simprrl 780 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑦 ∈ 𝑧) | |
| 13 | ioof 13469 | . . . . . . . . . 10 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 14 | ffn 6711 | . . . . . . . . . 10 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 15 | ovelrn 7588 | . . . . . . . . . 10 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))) | |
| 16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)) |
| 17 | oveq2 7418 | . . . . . . . . . . . 12 ⊢ (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))) | |
| 18 | ioosconn 35274 | . . . . . . . . . . . 12 ⊢ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn | |
| 19 | 17, 18 | eqeltrdi 2843 | . . . . . . . . . . 11 ⊢ (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 20 | 19 | rexlimivw 3138 | . . . . . . . . . 10 ⊢ (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 21 | 20 | rexlimivw 3138 | . . . . . . . . 9 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 22 | 16, 21 | sylbi 217 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (,) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 23 | 22 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 24 | 11, 12, 23 | jca32 515 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) |
| 25 | 24 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ((𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))) |
| 26 | 25 | reximdv2 3151 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → (∃𝑧 ∈ ran (,)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) |
| 27 | 2, 26 | mpd 15 | . . 3 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)) |
| 28 | 27 | rgen2 3185 | . 2 ⊢ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ 𝑥 ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 29 | islly 23411 | . 2 ⊢ ((topGen‘ran (,)) ∈ Locally SConn ↔ ((topGen‘ran (,)) ∈ Top ∧ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ 𝑥 ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) | |
| 30 | 1, 28, 29 | mpbir2an 711 | 1 ⊢ (topGen‘ran (,)) ∈ Locally SConn |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5657 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 ℝ*cxr 11273 (,)cioo 13367 ↾t crest 17439 topGenctg 17456 Topctop 22836 TopBasesctb 22888 Locally clly 23407 SConncsconn 35247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-cn 23170 df-cnp 23171 df-conn 23355 df-lly 23409 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-ii 24826 df-cncf 24827 df-htpy 24925 df-phtpy 24926 df-phtpc 24947 df-pconn 35248 df-sconn 35249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |