Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellysconn Structured version   Visualization version   GIF version

Theorem rellysconn 32080
Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
rellysconn (topGen‘ran (,)) ∈ Locally SConn

Proof of Theorem rellysconn
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 23073 . 2 (topGen‘ran (,)) ∈ Top
2 tg2 21277 . . . 4 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
3 retopbas 23072 . . . . . . . . . 10 ran (,) ∈ TopBases
4 bastg 21278 . . . . . . . . . 10 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
53, 4ax-mp 5 . . . . . . . . 9 ran (,) ⊆ (topGen‘ran (,))
6 simprl 758 . . . . . . . . 9 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ ran (,))
75, 6sseldi 3857 . . . . . . . 8 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ (topGen‘ran (,)))
8 simprrr 769 . . . . . . . . 9 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
9 selpw 4429 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
108, 9sylibr 226 . . . . . . . 8 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ 𝒫 𝑥)
117, 10elind 4060 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥))
12 simprrl 768 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
13 ioof 12651 . . . . . . . . . 10 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
14 ffn 6344 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
15 ovelrn 7140 . . . . . . . . . 10 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
17 oveq2 6984 . . . . . . . . . . . 12 (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)))
18 ioosconn 32076 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
1917, 18syl6eqel 2875 . . . . . . . . . . 11 (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2019rexlimivw 3228 . . . . . . . . . 10 (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2120rexlimivw 3228 . . . . . . . . 9 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2216, 21sylbi 209 . . . . . . . 8 (𝑧 ∈ ran (,) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2322ad2antrl 715 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2411, 12, 23jca32 508 . . . . . 6 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
2524ex 405 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ((𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥)) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))))
2625reximdv2 3217 . . . 4 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
272, 26mpd 15 . . 3 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))
2827rgen2 3154 . 2 𝑥 ∈ (topGen‘ran (,))∀𝑦𝑥𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
29 islly 21780 . 2 ((topGen‘ran (,)) ∈ Locally SConn ↔ ((topGen‘ran (,)) ∈ Top ∧ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦𝑥𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
301, 28, 29mpbir2an 698 1 (topGen‘ran (,)) ∈ Locally SConn
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3089  wrex 3090  cin 3829  wss 3830  𝒫 cpw 4422   × cxp 5405  ran crn 5408   Fn wfn 6183  wf 6184  cfv 6188  (class class class)co 6976  cr 10334  *cxr 10473  (,)cioo 12554  t crest 16550  topGenctg 16567  Topctop 21205  TopBasesctb 21257  Locally clly 21776  SConncsconn 32049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-cn 21539  df-cnp 21540  df-conn 21724  df-lly 21778  df-tx 21874  df-hmeo 22067  df-xms 22633  df-ms 22634  df-tms 22635  df-ii 23188  df-htpy 23277  df-phtpy 23278  df-phtpc 23299  df-pconn 32050  df-sconn 32051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator