Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellysconn Structured version   Visualization version   GIF version

Theorem rellysconn 35243
Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
rellysconn (topGen‘ran (,)) ∈ Locally SConn

Proof of Theorem rellysconn
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 24666 . 2 (topGen‘ran (,)) ∈ Top
2 tg2 22869 . . . 4 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
3 retopbas 24665 . . . . . . . . . 10 ran (,) ∈ TopBases
4 bastg 22870 . . . . . . . . . 10 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
53, 4ax-mp 5 . . . . . . . . 9 ran (,) ⊆ (topGen‘ran (,))
6 simprl 770 . . . . . . . . 9 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ ran (,))
75, 6sselid 3935 . . . . . . . 8 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ (topGen‘ran (,)))
8 simprrr 781 . . . . . . . . 9 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
9 velpw 4558 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑥𝑧𝑥)
108, 9sylibr 234 . . . . . . . 8 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ 𝒫 𝑥)
117, 10elind 4153 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥))
12 simprrl 780 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
13 ioof 13369 . . . . . . . . . 10 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
14 ffn 6656 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
15 ovelrn 7529 . . . . . . . . . 10 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
17 oveq2 7361 . . . . . . . . . . . 12 (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)))
18 ioosconn 35239 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
1917, 18eqeltrdi 2836 . . . . . . . . . . 11 (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2019rexlimivw 3126 . . . . . . . . . 10 (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2120rexlimivw 3126 . . . . . . . . 9 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2216, 21sylbi 217 . . . . . . . 8 (𝑧 ∈ ran (,) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2322ad2antrl 728 . . . . . . 7 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
2411, 12, 23jca32 515 . . . . . 6 (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
2524ex 412 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ((𝑧 ∈ ran (,) ∧ (𝑦𝑧𝑧𝑥)) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))))
2625reximdv2 3139 . . . 4 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
272, 26mpd 15 . . 3 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))
2827rgen2 3169 . 2 𝑥 ∈ (topGen‘ran (,))∀𝑦𝑥𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)
29 islly 23372 . 2 ((topGen‘ran (,)) ∈ Locally SConn ↔ ((topGen‘ran (,)) ∈ Top ∧ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦𝑥𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))
301, 28, 29mpbir2an 711 1 (topGen‘ran (,)) ∈ Locally SConn
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3904  wss 3905  𝒫 cpw 4553   × cxp 5621  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  *cxr 11167  (,)cioo 13267  t crest 17343  topGenctg 17360  Topctop 22797  TopBasesctb 22849  Locally clly 23368  SConncsconn 35212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-cn 23131  df-cnp 23132  df-conn 23316  df-lly 23370  df-tx 23466  df-hmeo 23659  df-xms 24225  df-ms 24226  df-tms 24227  df-ii 24787  df-cncf 24788  df-htpy 24886  df-phtpy 24887  df-phtpc 24908  df-pconn 35213  df-sconn 35214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator