| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rellysconn | Structured version Visualization version GIF version | ||
| Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| rellysconn | ⊢ (topGen‘ran (,)) ∈ Locally SConn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24666 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | tg2 22869 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ ran (,)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) | |
| 3 | retopbas 24665 | . . . . . . . . . 10 ⊢ ran (,) ∈ TopBases | |
| 4 | bastg 22870 | . . . . . . . . . 10 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . . 9 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 6 | simprl 770 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ ran (,)) | |
| 7 | 5, 6 | sselid 3935 | . . . . . . . 8 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ (topGen‘ran (,))) |
| 8 | simprrr 781 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ⊆ 𝑥) | |
| 9 | velpw 4558 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥) | |
| 10 | 8, 9 | sylibr 234 | . . . . . . . 8 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ 𝒫 𝑥) |
| 11 | 7, 10 | elind 4153 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)) |
| 12 | simprrl 780 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → 𝑦 ∈ 𝑧) | |
| 13 | ioof 13369 | . . . . . . . . . 10 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 14 | ffn 6656 | . . . . . . . . . 10 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 15 | ovelrn 7529 | . . . . . . . . . 10 ⊢ ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))) | |
| 16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)) |
| 17 | oveq2 7361 | . . . . . . . . . . . 12 ⊢ (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))) | |
| 18 | ioosconn 35239 | . . . . . . . . . . . 12 ⊢ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn | |
| 19 | 17, 18 | eqeltrdi 2836 | . . . . . . . . . . 11 ⊢ (𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 20 | 19 | rexlimivw 3126 | . . . . . . . . . 10 ⊢ (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 21 | 20 | rexlimivw 3126 | . . . . . . . . 9 ⊢ (∃𝑎 ∈ ℝ* ∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 22 | 16, 21 | sylbi 217 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (,) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 23 | 22 | ad2antrl 728 | . . . . . . 7 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 24 | 11, 12, 23 | jca32 515 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) |
| 25 | 24 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ((𝑧 ∈ ran (,) ∧ (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)))) |
| 26 | 25 | reximdv2 3139 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → (∃𝑧 ∈ ran (,)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) |
| 27 | 2, 26 | mpd 15 | . . 3 ⊢ ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn)) |
| 28 | 27 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ 𝑥 ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn) |
| 29 | islly 23372 | . 2 ⊢ ((topGen‘ran (,)) ∈ Locally SConn ↔ ((topGen‘ran (,)) ∈ Top ∧ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ 𝑥 ∃𝑧 ∈ ((topGen‘ran (,)) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑧 ∧ ((topGen‘ran (,)) ↾t 𝑧) ∈ SConn))) | |
| 30 | 1, 28, 29 | mpbir2an 711 | 1 ⊢ (topGen‘ran (,)) ∈ Locally SConn |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 ℝ*cxr 11167 (,)cioo 13267 ↾t crest 17343 topGenctg 17360 Topctop 22797 TopBasesctb 22849 Locally clly 23368 SConncsconn 35212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-cn 23131 df-cnp 23132 df-conn 23316 df-lly 23370 df-tx 23466 df-hmeo 23659 df-xms 24225 df-ms 24226 df-tms 24227 df-ii 24787 df-cncf 24788 df-htpy 24886 df-phtpy 24887 df-phtpc 24908 df-pconn 35213 df-sconn 35214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |