![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlval | Structured version Visualization version GIF version |
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
maxidlval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidlval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
maxidlval | ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . 3 ⊢ (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅)) | |
2 | fveq2 6892 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
3 | maxidlval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | 2, 3 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5934 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | maxidlval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | 7 | neeq2d 2991 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ≠ ran (1st ‘𝑟) ↔ 𝑖 ≠ 𝑋)) |
9 | 7 | eqeq2d 2736 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑗 = ran (1st ‘𝑟) ↔ 𝑗 = 𝑋)) |
10 | 9 | orbi2d 913 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟)) ↔ (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))) |
11 | 10 | imbi2d 339 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))) ↔ (𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))) |
12 | 1, 11 | raleqbidv 3330 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))) |
13 | 8, 12 | anbi12d 630 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟)))) ↔ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))))) |
14 | 1, 13 | rabeqbidv 3437 | . 2 ⊢ (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
15 | df-maxidl 37542 | . 2 ⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) | |
16 | fvex 6905 | . . 3 ⊢ (Idl‘𝑅) ∈ V | |
17 | 16 | rabex 5329 | . 2 ⊢ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ∈ V |
18 | 14, 15, 17 | fvmpt 7000 | 1 ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 {crab 3419 ⊆ wss 3939 ran crn 5673 ‘cfv 6543 1st c1st 7989 RingOpscrngo 37424 Idlcidl 37537 MaxIdlcmaxidl 37539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-maxidl 37542 |
This theorem is referenced by: ismaxidl 37570 |
Copyright terms: Public domain | W3C validator |