Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlval Structured version   Visualization version   GIF version

Theorem maxidlval 34759
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
maxidlval.1 𝐺 = (1st𝑅)
maxidlval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
maxidlval (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐺(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem maxidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6493 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6493 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 maxidlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3syl6eqr 2826 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5645 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 maxidlval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6syl6eqr 2826 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 3021 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
97eqeq2d 2782 . . . . . . 7 (𝑟 = 𝑅 → (𝑗 = ran (1st𝑟) ↔ 𝑗 = 𝑋))
109orbi2d 899 . . . . . 6 (𝑟 = 𝑅 → ((𝑗 = 𝑖𝑗 = ran (1st𝑟)) ↔ (𝑗 = 𝑖𝑗 = 𝑋)))
1110imbi2d 333 . . . . 5 (𝑟 = 𝑅 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ (𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
121, 11raleqbidv 3335 . . . 4 (𝑟 = 𝑅 → (∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
138, 12anbi12d 621 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟)))) ↔ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))))
141, 13rabeqbidv 3402 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
15 df-maxidl 34732 . 2 MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))})
16 fvex 6506 . . 3 (Idl‘𝑅) ∈ V
1716rabex 5085 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ∈ V
1814, 15, 17fvmpt 6589 1 (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2961  wral 3082  {crab 3086  wss 3823  ran crn 5402  cfv 6182  1st c1st 7493  RingOpscrngo 34614  Idlcidl 34727  MaxIdlcmaxidl 34729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-iota 6146  df-fun 6184  df-fv 6190  df-maxidl 34732
This theorem is referenced by:  ismaxidl  34760
  Copyright terms: Public domain W3C validator