Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlval Structured version   Visualization version   GIF version

Theorem maxidlval 38068
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
maxidlval.1 𝐺 = (1st𝑅)
maxidlval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
maxidlval (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐺(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem maxidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6881 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 maxidlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3eqtr4di 2789 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5923 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 maxidlval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 2993 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
97eqeq2d 2747 . . . . . . 7 (𝑟 = 𝑅 → (𝑗 = ran (1st𝑟) ↔ 𝑗 = 𝑋))
109orbi2d 915 . . . . . 6 (𝑟 = 𝑅 → ((𝑗 = 𝑖𝑗 = ran (1st𝑟)) ↔ (𝑗 = 𝑖𝑗 = 𝑋)))
1110imbi2d 340 . . . . 5 (𝑟 = 𝑅 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ (𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
121, 11raleqbidv 3329 . . . 4 (𝑟 = 𝑅 → (∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
138, 12anbi12d 632 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟)))) ↔ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))))
141, 13rabeqbidv 3439 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
15 df-maxidl 38041 . 2 MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))})
16 fvex 6894 . . 3 (Idl‘𝑅) ∈ V
1716rabex 5314 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ∈ V
1814, 15, 17fvmpt 6991 1 (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  wss 3931  ran crn 5660  cfv 6536  1st c1st 7991  RingOpscrngo 37923  Idlcidl 38036  MaxIdlcmaxidl 38038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-maxidl 38041
This theorem is referenced by:  ismaxidl  38069
  Copyright terms: Public domain W3C validator