Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlval | Structured version Visualization version GIF version |
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
maxidlval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidlval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
maxidlval | ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6717 | . . 3 ⊢ (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅)) | |
2 | fveq2 6717 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = (1st ‘𝑅)) | |
3 | maxidlval.1 | . . . . . . . 8 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (1st ‘𝑟) = 𝐺) |
5 | 4 | rneqd 5807 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = ran 𝐺) |
6 | maxidlval.2 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → ran (1st ‘𝑟) = 𝑋) |
8 | 7 | neeq2d 3001 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ≠ ran (1st ‘𝑟) ↔ 𝑖 ≠ 𝑋)) |
9 | 7 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑗 = ran (1st ‘𝑟) ↔ 𝑗 = 𝑋)) |
10 | 9 | orbi2d 916 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟)) ↔ (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))) |
11 | 10 | imbi2d 344 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))) ↔ (𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))) |
12 | 1, 11 | raleqbidv 3313 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))) |
13 | 8, 12 | anbi12d 634 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟)))) ↔ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))))) |
14 | 1, 13 | rabeqbidv 3396 | . 2 ⊢ (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
15 | df-maxidl 35907 | . 2 ⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) | |
16 | fvex 6730 | . . 3 ⊢ (Idl‘𝑅) ∈ V | |
17 | 16 | rabex 5225 | . 2 ⊢ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ∈ V |
18 | 14, 15, 17 | fvmpt 6818 | 1 ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 {crab 3065 ⊆ wss 3866 ran crn 5552 ‘cfv 6380 1st c1st 7759 RingOpscrngo 35789 Idlcidl 35902 MaxIdlcmaxidl 35904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fv 6388 df-maxidl 35907 |
This theorem is referenced by: ismaxidl 35935 |
Copyright terms: Public domain | W3C validator |