Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswmnd Structured version   Visualization version   GIF version

Theorem signswmnd 34555
Description: 𝑊 is a monoid structure on {-1, 0, 1} which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswmnd 𝑊 ∈ Mnd
Distinct variable group:   𝑎,𝑏,
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem signswmnd
Dummy variables 𝑢 𝑒 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsw.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 34550 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
3 ifcl 4537 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → if(𝑣 = 0, 𝑢, 𝑣) ∈ {-1, 0, 1})
42, 3eqeltrd 2829 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) ∈ {-1, 0, 1})
51signspval 34550 . . . . . . . . . . . . 13 (((𝑢 𝑣) ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
64, 5stoic3 1776 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
7 iftrue 4497 . . . . . . . . . . . 12 (𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
86, 7sylan9eq 2785 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
98adantr 480 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
1023adant3 1132 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
1110ad2antrr 726 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
12 iftrue 4497 . . . . . . . . . . 11 (𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
1312adantl 481 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
149, 11, 133eqtrd 2769 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑢)
15 simp1 1136 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → 𝑢 ∈ {-1, 0, 1})
161signspval 34550 . . . . . . . . . . . . . 14 ((𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
17163adant1 1130 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
18 simpl2 1193 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → 𝑣 ∈ {-1, 0, 1})
19 simpl3 1194 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ {-1, 0, 1})
2018, 19ifclda 4527 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → if(𝑤 = 0, 𝑣, 𝑤) ∈ {-1, 0, 1})
2117, 20eqeltrd 2829 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) ∈ {-1, 0, 1})
221signspval 34550 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ (𝑣 𝑤) ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2315, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2423ad2antrr 726 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
25 iftrue 4497 . . . . . . . . . . . . 13 (𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
2617, 25sylan9eq 2785 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → (𝑣 𝑤) = 𝑣)
27 id 22 . . . . . . . . . . . 12 (𝑣 = 0 → 𝑣 = 0)
2826, 27sylan9eq 2785 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑣 𝑤) = 0)
2928iftrued 4499 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = 𝑢)
3024, 29eqtrd 2765 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑢)
3114, 30eqtr4d 2768 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
326ad2antrr 726 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
337ad2antlr 727 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
3410ad2antrr 726 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
35 iffalse 4500 . . . . . . . . . . . 12 𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3635adantl 481 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3734, 36eqtrd 2765 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = 𝑣)
3832, 33, 373eqtrd 2769 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑣)
3923ad2antrr 726 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
40 simpr 484 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ 𝑣 = 0)
4117ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
4225ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
4341, 42eqtrd 2765 . . . . . . . . . . . . 13 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = 𝑣)
4443eqeq1d 2732 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑣 = 0))
4540, 44mtbird 325 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ (𝑣 𝑤) = 0)
4645iffalsed 4502 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
4739, 46, 433eqtrd 2769 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑣)
4838, 47eqtr4d 2768 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
4931, 48pm2.61dan 812 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
50 iffalse 4500 . . . . . . . . 9 𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = 𝑤)
516, 50sylan9eq 2785 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = 𝑤)
5223adantr 480 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
53 simpr 484 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ 𝑤 = 0)
54 iffalse 4500 . . . . . . . . . . . . 13 𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑤)
5517, 54sylan9eq 2785 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑣 𝑤) = 𝑤)
5655eqeq1d 2732 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑤 = 0))
5753, 56mtbird 325 . . . . . . . . . 10 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ (𝑣 𝑤) = 0)
5857iffalsed 4502 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
5952, 58, 553eqtrd 2769 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = 𝑤)
6051, 59eqtr4d 2768 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6149, 60pm2.61dan 812 . . . . . 6 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
62613expa 1118 . . . . 5 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6362ralrimiva 3126 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
644, 63jca 511 . . 3 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))))
6564rgen2 3178 . 2 𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
66 c0ex 11175 . . . 4 0 ∈ V
6766tpid2 4737 . . 3 0 ∈ {-1, 0, 1}
681signsw0glem 34551 . . 3 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
69 oveq1 7397 . . . . . 6 (𝑒 = 0 → (𝑒 𝑢) = (0 𝑢))
7069eqeq1d 2732 . . . . 5 (𝑒 = 0 → ((𝑒 𝑢) = 𝑢 ↔ (0 𝑢) = 𝑢))
7170ovanraleqv 7414 . . . 4 (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)))
7271rspcev 3591 . . 3 ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢))
7367, 68, 72mp2an 692 . 2 𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)
74 signsw.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
751, 74signswbase 34552 . . 3 {-1, 0, 1} = (Base‘𝑊)
761, 74signswplusg 34553 . . 3 = (+g𝑊)
7775, 76ismnd 18671 . 2 (𝑊 ∈ Mnd ↔ (∀𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))) ∧ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)))
7865, 73, 77mpbir2an 711 1 𝑊 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ifcif 4491  {cpr 4594  {ctp 4596  cop 4598  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076  -cneg 11413  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mgm 18574  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  signstcl  34563  signstf  34564  signstf0  34566  signstfvn  34567
  Copyright terms: Public domain W3C validator