Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswmnd Structured version   Visualization version   GIF version

Theorem signswmnd 34534
Description: 𝑊 is a monoid structure on {-1, 0, 1} which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswmnd 𝑊 ∈ Mnd
Distinct variable group:   𝑎,𝑏,
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem signswmnd
Dummy variables 𝑢 𝑒 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsw.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 34529 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
3 ifcl 4593 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → if(𝑣 = 0, 𝑢, 𝑣) ∈ {-1, 0, 1})
42, 3eqeltrd 2844 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) ∈ {-1, 0, 1})
51signspval 34529 . . . . . . . . . . . . 13 (((𝑢 𝑣) ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
64, 5stoic3 1774 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
7 iftrue 4554 . . . . . . . . . . . 12 (𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
86, 7sylan9eq 2800 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
98adantr 480 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
1023adant3 1132 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
1110ad2antrr 725 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
12 iftrue 4554 . . . . . . . . . . 11 (𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
1312adantl 481 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
149, 11, 133eqtrd 2784 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑢)
15 simp1 1136 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → 𝑢 ∈ {-1, 0, 1})
161signspval 34529 . . . . . . . . . . . . . 14 ((𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
17163adant1 1130 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
18 simpl2 1192 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → 𝑣 ∈ {-1, 0, 1})
19 simpl3 1193 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ {-1, 0, 1})
2018, 19ifclda 4583 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → if(𝑤 = 0, 𝑣, 𝑤) ∈ {-1, 0, 1})
2117, 20eqeltrd 2844 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) ∈ {-1, 0, 1})
221signspval 34529 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ (𝑣 𝑤) ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2315, 21, 22syl2anc 583 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2423ad2antrr 725 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
25 iftrue 4554 . . . . . . . . . . . . 13 (𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
2617, 25sylan9eq 2800 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → (𝑣 𝑤) = 𝑣)
27 id 22 . . . . . . . . . . . 12 (𝑣 = 0 → 𝑣 = 0)
2826, 27sylan9eq 2800 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑣 𝑤) = 0)
2928iftrued 4556 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = 𝑢)
3024, 29eqtrd 2780 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑢)
3114, 30eqtr4d 2783 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
326ad2antrr 725 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
337ad2antlr 726 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
3410ad2antrr 725 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
35 iffalse 4557 . . . . . . . . . . . 12 𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3635adantl 481 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3734, 36eqtrd 2780 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = 𝑣)
3832, 33, 373eqtrd 2784 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑣)
3923ad2antrr 725 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
40 simpr 484 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ 𝑣 = 0)
4117ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
4225ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
4341, 42eqtrd 2780 . . . . . . . . . . . . 13 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = 𝑣)
4443eqeq1d 2742 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑣 = 0))
4540, 44mtbird 325 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ (𝑣 𝑤) = 0)
4645iffalsed 4559 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
4739, 46, 433eqtrd 2784 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑣)
4838, 47eqtr4d 2783 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
4931, 48pm2.61dan 812 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
50 iffalse 4557 . . . . . . . . 9 𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = 𝑤)
516, 50sylan9eq 2800 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = 𝑤)
5223adantr 480 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
53 simpr 484 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ 𝑤 = 0)
54 iffalse 4557 . . . . . . . . . . . . 13 𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑤)
5517, 54sylan9eq 2800 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑣 𝑤) = 𝑤)
5655eqeq1d 2742 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑤 = 0))
5753, 56mtbird 325 . . . . . . . . . 10 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ (𝑣 𝑤) = 0)
5857iffalsed 4559 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
5952, 58, 553eqtrd 2784 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = 𝑤)
6051, 59eqtr4d 2783 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6149, 60pm2.61dan 812 . . . . . 6 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
62613expa 1118 . . . . 5 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6362ralrimiva 3152 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
644, 63jca 511 . . 3 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))))
6564rgen2 3205 . 2 𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
66 c0ex 11284 . . . 4 0 ∈ V
6766tpid2 4795 . . 3 0 ∈ {-1, 0, 1}
681signsw0glem 34530 . . 3 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
69 oveq1 7455 . . . . . 6 (𝑒 = 0 → (𝑒 𝑢) = (0 𝑢))
7069eqeq1d 2742 . . . . 5 (𝑒 = 0 → ((𝑒 𝑢) = 𝑢 ↔ (0 𝑢) = 𝑢))
7170ovanraleqv 7472 . . . 4 (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)))
7271rspcev 3635 . . 3 ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢))
7367, 68, 72mp2an 691 . 2 𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)
74 signsw.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
751, 74signswbase 34531 . . 3 {-1, 0, 1} = (Base‘𝑊)
761, 74signswplusg 34532 . . 3 = (+g𝑊)
7775, 76ismnd 18775 . 2 (𝑊 ∈ Mnd ↔ (∀𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))) ∧ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)))
7865, 73, 77mpbir2an 710 1 𝑊 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ifcif 4548  {cpr 4650  {ctp 4652  cop 4654  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  -cneg 11521  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mgm 18678  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  signstcl  34542  signstf  34543  signstf0  34545  signstfvn  34546
  Copyright terms: Public domain W3C validator