Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswmnd Structured version   Visualization version   GIF version

Theorem signswmnd 32436
Description: 𝑊 is a monoid structure on {-1, 0, 1} which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswmnd 𝑊 ∈ Mnd
Distinct variable group:   𝑎,𝑏,
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem signswmnd
Dummy variables 𝑢 𝑒 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsw.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 32431 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
3 ifcl 4501 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → if(𝑣 = 0, 𝑢, 𝑣) ∈ {-1, 0, 1})
42, 3eqeltrd 2839 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) ∈ {-1, 0, 1})
51signspval 32431 . . . . . . . . . . . . 13 (((𝑢 𝑣) ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
64, 5stoic3 1780 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
7 iftrue 4462 . . . . . . . . . . . 12 (𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
86, 7sylan9eq 2799 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
98adantr 480 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
1023adant3 1130 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
1110ad2antrr 722 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
12 iftrue 4462 . . . . . . . . . . 11 (𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
1312adantl 481 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
149, 11, 133eqtrd 2782 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑢)
15 simp1 1134 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → 𝑢 ∈ {-1, 0, 1})
161signspval 32431 . . . . . . . . . . . . . 14 ((𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
17163adant1 1128 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
18 simpl2 1190 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → 𝑣 ∈ {-1, 0, 1})
19 simpl3 1191 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ {-1, 0, 1})
2018, 19ifclda 4491 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → if(𝑤 = 0, 𝑣, 𝑤) ∈ {-1, 0, 1})
2117, 20eqeltrd 2839 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) ∈ {-1, 0, 1})
221signspval 32431 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ (𝑣 𝑤) ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2315, 21, 22syl2anc 583 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2423ad2antrr 722 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
25 iftrue 4462 . . . . . . . . . . . . 13 (𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
2617, 25sylan9eq 2799 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → (𝑣 𝑤) = 𝑣)
27 id 22 . . . . . . . . . . . 12 (𝑣 = 0 → 𝑣 = 0)
2826, 27sylan9eq 2799 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑣 𝑤) = 0)
2928iftrued 4464 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = 𝑢)
3024, 29eqtrd 2778 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑢)
3114, 30eqtr4d 2781 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
326ad2antrr 722 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
337ad2antlr 723 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
3410ad2antrr 722 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
35 iffalse 4465 . . . . . . . . . . . 12 𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3635adantl 481 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3734, 36eqtrd 2778 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = 𝑣)
3832, 33, 373eqtrd 2782 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑣)
3923ad2antrr 722 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
40 simpr 484 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ 𝑣 = 0)
4117ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
4225ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
4341, 42eqtrd 2778 . . . . . . . . . . . . 13 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = 𝑣)
4443eqeq1d 2740 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑣 = 0))
4540, 44mtbird 324 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ (𝑣 𝑤) = 0)
4645iffalsed 4467 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
4739, 46, 433eqtrd 2782 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑣)
4838, 47eqtr4d 2781 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
4931, 48pm2.61dan 809 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
50 iffalse 4465 . . . . . . . . 9 𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = 𝑤)
516, 50sylan9eq 2799 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = 𝑤)
5223adantr 480 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
53 simpr 484 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ 𝑤 = 0)
54 iffalse 4465 . . . . . . . . . . . . 13 𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑤)
5517, 54sylan9eq 2799 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑣 𝑤) = 𝑤)
5655eqeq1d 2740 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑤 = 0))
5753, 56mtbird 324 . . . . . . . . . 10 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ (𝑣 𝑤) = 0)
5857iffalsed 4467 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
5952, 58, 553eqtrd 2782 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = 𝑤)
6051, 59eqtr4d 2781 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6149, 60pm2.61dan 809 . . . . . 6 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
62613expa 1116 . . . . 5 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6362ralrimiva 3107 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
644, 63jca 511 . . 3 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))))
6564rgen2 3126 . 2 𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
66 c0ex 10900 . . . 4 0 ∈ V
6766tpid2 4703 . . 3 0 ∈ {-1, 0, 1}
681signsw0glem 32432 . . 3 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
69 oveq1 7262 . . . . . 6 (𝑒 = 0 → (𝑒 𝑢) = (0 𝑢))
7069eqeq1d 2740 . . . . 5 (𝑒 = 0 → ((𝑒 𝑢) = 𝑢 ↔ (0 𝑢) = 𝑢))
7170ovanraleqv 7279 . . . 4 (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)))
7271rspcev 3552 . . 3 ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢))
7367, 68, 72mp2an 688 . 2 𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)
74 signsw.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
751, 74signswbase 32433 . . 3 {-1, 0, 1} = (Base‘𝑊)
761, 74signswplusg 32434 . . 3 = (+g𝑊)
7775, 76ismnd 18303 . 2 (𝑊 ∈ Mnd ↔ (∀𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))) ∧ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)))
7865, 73, 77mpbir2an 707 1 𝑊 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ifcif 4456  {cpr 4560  {ctp 4562  cop 4564  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  -cneg 11136  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by:  signstcl  32444  signstf  32445  signstf0  32447  signstfvn  32448
  Copyright terms: Public domain W3C validator