Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl Structured version   Visualization version   GIF version

Theorem isorcl 49064
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
isorcl (𝜑𝐶 ∈ Cat)

Proof of Theorem isorcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . 2 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 elfvne0 48879 . . . 4 (𝐹 ∈ (𝐼‘⟨𝑋, 𝑌⟩) → 𝐼 ≠ ∅)
3 df-ov 7349 . . . 4 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
42, 3eleq2s 2849 . . 3 (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅)
5 isorcl.i . . . . 5 𝐼 = (Iso‘𝐶)
65neeq1i 2992 . . . 4 (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅)
7 n0 4303 . . . 4 ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
86, 7bitri 275 . . 3 (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
94, 8sylib 218 . 2 (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶))
10 df-iso 17653 . . . 4 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
1110mptrcl 6938 . . 3 (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
1211exlimiv 1931 . 2 (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
131, 9, 123syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  c0 4283  cop 4582  cmpt 5172  dom cdm 5616  ccom 5620  cfv 6481  (class class class)co 7346  Catccat 17567  Invcinv 17649  Isociso 17650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-iso 17653
This theorem is referenced by:  isorcl2  49065  isoval2  49066
  Copyright terms: Public domain W3C validator