| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isorcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isorcl.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isorcl.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| isorcl | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorcl.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 2 | elfvne0 48973 | . . . 4 ⊢ (𝐹 ∈ (𝐼‘〈𝑋, 𝑌〉) → 𝐼 ≠ ∅) | |
| 3 | df-ov 7355 | . . . 4 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
| 4 | 2, 3 | eleq2s 2851 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅) |
| 5 | isorcl.i | . . . . 5 ⊢ 𝐼 = (Iso‘𝐶) | |
| 6 | 5 | neeq1i 2993 | . . . 4 ⊢ (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅) |
| 7 | n0 4302 | . . . 4 ⊢ ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶)) |
| 9 | 4, 8 | sylib 218 | . 2 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶)) |
| 10 | df-iso 17658 | . . . 4 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
| 11 | 10 | mptrcl 6944 | . . 3 ⊢ (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat) |
| 12 | 11 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat) |
| 13 | 1, 9, 12 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 〈cop 4581 ↦ cmpt 5174 dom cdm 5619 ∘ ccom 5623 ‘cfv 6486 (class class class)co 7352 Catccat 17572 Invcinv 17654 Isociso 17655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 df-ov 7355 df-iso 17658 |
| This theorem is referenced by: isorcl2 49159 isoval2 49160 |
| Copyright terms: Public domain | W3C validator |