Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl Structured version   Visualization version   GIF version

Theorem isorcl 49022
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
isorcl (𝜑𝐶 ∈ Cat)

Proof of Theorem isorcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . 2 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 elfvne0 48837 . . . 4 (𝐹 ∈ (𝐼‘⟨𝑋, 𝑌⟩) → 𝐼 ≠ ∅)
3 df-ov 7390 . . . 4 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
42, 3eleq2s 2846 . . 3 (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅)
5 isorcl.i . . . . 5 𝐼 = (Iso‘𝐶)
65neeq1i 2989 . . . 4 (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅)
7 n0 4316 . . . 4 ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
86, 7bitri 275 . . 3 (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
94, 8sylib 218 . 2 (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶))
10 df-iso 17711 . . . 4 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
1110mptrcl 6977 . . 3 (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
1211exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
131, 9, 123syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3447  c0 4296  cop 4595  cmpt 5188  dom cdm 5638  ccom 5642  cfv 6511  (class class class)co 7387  Catccat 17625  Invcinv 17707  Isociso 17708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-ov 7390  df-iso 17711
This theorem is referenced by:  isorcl2  49023  isoval2  49024
  Copyright terms: Public domain W3C validator