| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isorcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isorcl.i | ⊢ 𝐼 = (Iso‘𝐶) |
| isorcl.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| isorcl | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorcl.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 2 | elfvne0 48769 | . . . 4 ⊢ (𝐹 ∈ (𝐼‘〈𝑋, 𝑌〉) → 𝐼 ≠ ∅) | |
| 3 | df-ov 7397 | . . . 4 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
| 4 | 2, 3 | eleq2s 2847 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅) |
| 5 | isorcl.i | . . . . 5 ⊢ 𝐼 = (Iso‘𝐶) | |
| 6 | 5 | neeq1i 2991 | . . . 4 ⊢ (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅) |
| 7 | n0 4324 | . . . 4 ⊢ ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶)) |
| 9 | 4, 8 | sylib 218 | . 2 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶)) |
| 10 | df-iso 17717 | . . . 4 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
| 11 | 10 | mptrcl 6984 | . . 3 ⊢ (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat) |
| 12 | 11 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat) |
| 13 | 1, 9, 12 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2927 Vcvv 3455 ∅c0 4304 〈cop 4603 ↦ cmpt 5196 dom cdm 5646 ∘ ccom 5650 ‘cfv 6519 (class class class)co 7394 Catccat 17631 Invcinv 17713 Isociso 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fv 6527 df-ov 7397 df-iso 17717 |
| This theorem is referenced by: isorcl2 48951 isoval2 48952 |
| Copyright terms: Public domain | W3C validator |