Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl Structured version   Visualization version   GIF version

Theorem isorcl 48950
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
isorcl (𝜑𝐶 ∈ Cat)

Proof of Theorem isorcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . 2 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 elfvne0 48769 . . . 4 (𝐹 ∈ (𝐼‘⟨𝑋, 𝑌⟩) → 𝐼 ≠ ∅)
3 df-ov 7397 . . . 4 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
42, 3eleq2s 2847 . . 3 (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅)
5 isorcl.i . . . . 5 𝐼 = (Iso‘𝐶)
65neeq1i 2991 . . . 4 (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅)
7 n0 4324 . . . 4 ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
86, 7bitri 275 . . 3 (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
94, 8sylib 218 . 2 (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶))
10 df-iso 17717 . . . 4 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
1110mptrcl 6984 . . 3 (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
1211exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
131, 9, 123syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2927  Vcvv 3455  c0 4304  cop 4603  cmpt 5196  dom cdm 5646  ccom 5650  cfv 6519  (class class class)co 7394  Catccat 17631  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fv 6527  df-ov 7397  df-iso 17717
This theorem is referenced by:  isorcl2  48951  isoval2  48952
  Copyright terms: Public domain W3C validator