Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl Structured version   Visualization version   GIF version

Theorem isorcl 49006
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
isorcl (𝜑𝐶 ∈ Cat)

Proof of Theorem isorcl
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . 2 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 elfvne0 48821 . . . 4 (𝐹 ∈ (𝐼‘⟨𝑋, 𝑌⟩) → 𝐼 ≠ ∅)
3 df-ov 7356 . . . 4 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
42, 3eleq2s 2846 . . 3 (𝐹 ∈ (𝑋𝐼𝑌) → 𝐼 ≠ ∅)
5 isorcl.i . . . . 5 𝐼 = (Iso‘𝐶)
65neeq1i 2989 . . . 4 (𝐼 ≠ ∅ ↔ (Iso‘𝐶) ≠ ∅)
7 n0 4306 . . . 4 ((Iso‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
86, 7bitri 275 . . 3 (𝐼 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Iso‘𝐶))
94, 8sylib 218 . 2 (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑥 𝑥 ∈ (Iso‘𝐶))
10 df-iso 17674 . . . 4 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
1110mptrcl 6943 . . 3 (𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
1211exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (Iso‘𝐶) → 𝐶 ∈ Cat)
131, 9, 123syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  c0 4286  cop 4585  cmpt 5176  dom cdm 5623  ccom 5627  cfv 6486  (class class class)co 7353  Catccat 17588  Invcinv 17670  Isociso 17671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494  df-ov 7356  df-iso 17674
This theorem is referenced by:  isorcl2  49007  isoval2  49008
  Copyright terms: Public domain W3C validator