| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isoval2 | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isoval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isoval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval2 | ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | isoval2.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | isoval2.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | 4, 1 | isorcl 48950 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝐶 ∈ Cat) |
| 6 | 4, 1, 2 | isorcl2 48951 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 2, 3, 5, 7, 8, 4 | isoval 17733 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| 10 | 1, 9 | eleqtrd 2831 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 11 | vex 3459 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 12 | 11 | eldm 5872 | . . . 4 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) ↔ ∃𝑔 𝑓(𝑋𝑁𝑌)𝑔) |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓(𝑋𝑁𝑌)𝑔) | |
| 14 | 3, 13 | invrcl 48941 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝐶 ∈ Cat) |
| 15 | 3, 13, 2 | invrcl2 48942 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑋 ∈ (Base‘𝐶)) |
| 17 | 15 | simprd 495 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑌 ∈ (Base‘𝐶)) |
| 18 | 2, 3, 14, 16, 17, 4, 13 | inviso1 17734 | . . . . 5 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 19 | 18 | exlimiv 1930 | . . . 4 ⊢ (∃𝑔 𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 20 | 12, 19 | sylbi 217 | . . 3 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 21 | 10, 20 | impbii 209 | . 2 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 22 | 21 | eqriv 2727 | 1 ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5115 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Invcinv 17713 Isociso 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-cat 17635 df-cid 17636 df-sect 17715 df-inv 17716 df-iso 17717 |
| This theorem is referenced by: uobeq3 49294 |
| Copyright terms: Public domain | W3C validator |