| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isoval2 | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isoval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isoval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval2 | ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | isoval2.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | isoval2.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | 4, 1 | isorcl 49006 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝐶 ∈ Cat) |
| 6 | 4, 1, 2 | isorcl2 49007 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 2, 3, 5, 7, 8, 4 | isoval 17690 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| 10 | 1, 9 | eleqtrd 2830 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 11 | vex 3442 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 12 | 11 | eldm 5847 | . . . 4 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) ↔ ∃𝑔 𝑓(𝑋𝑁𝑌)𝑔) |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓(𝑋𝑁𝑌)𝑔) | |
| 14 | 3, 13 | invrcl 48997 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝐶 ∈ Cat) |
| 15 | 3, 13, 2 | invrcl2 48998 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑋 ∈ (Base‘𝐶)) |
| 17 | 15 | simprd 495 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑌 ∈ (Base‘𝐶)) |
| 18 | 2, 3, 14, 16, 17, 4, 13 | inviso1 17691 | . . . . 5 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 19 | 18 | exlimiv 1930 | . . . 4 ⊢ (∃𝑔 𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 20 | 12, 19 | sylbi 217 | . . 3 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 21 | 10, 20 | impbii 209 | . 2 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 22 | 21 | eqriv 2726 | 1 ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Invcinv 17670 Isociso 17671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-cat 17592 df-cid 17593 df-sect 17672 df-inv 17673 df-iso 17674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |