Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoval2 Structured version   Visualization version   GIF version

Theorem isoval2 49008
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isoval2.n 𝑁 = (Inv‘𝐶)
isoval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isoval2 (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)

Proof of Theorem isoval2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ (𝑋𝐼𝑌))
2 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 isoval2.n . . . . 5 𝑁 = (Inv‘𝐶)
4 isoval2.i . . . . . 6 𝐼 = (Iso‘𝐶)
54, 1isorcl 49006 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝐶 ∈ Cat)
64, 1, 2isorcl2 49007 . . . . . 6 (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 494 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 495 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 5, 7, 8, 4isoval 17690 . . . 4 (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
101, 9eleqtrd 2830 . . 3 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ dom (𝑋𝑁𝑌))
11 vex 3442 . . . . 5 𝑓 ∈ V
1211eldm 5847 . . . 4 (𝑓 ∈ dom (𝑋𝑁𝑌) ↔ ∃𝑔 𝑓(𝑋𝑁𝑌)𝑔)
13 id 22 . . . . . . 7 (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)𝑔)
143, 13invrcl 48997 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝐶 ∈ Cat)
153, 13, 2invrcl2 48998 . . . . . . 7 (𝑓(𝑋𝑁𝑌)𝑔 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
1615simpld 494 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝑋 ∈ (Base‘𝐶))
1715simprd 495 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝑌 ∈ (Base‘𝐶))
182, 3, 14, 16, 17, 4, 13inviso1 17691 . . . . 5 (𝑓(𝑋𝑁𝑌)𝑔𝑓 ∈ (𝑋𝐼𝑌))
1918exlimiv 1930 . . . 4 (∃𝑔 𝑓(𝑋𝑁𝑌)𝑔𝑓 ∈ (𝑋𝐼𝑌))
2012, 19sylbi 217 . . 3 (𝑓 ∈ dom (𝑋𝑁𝑌) → 𝑓 ∈ (𝑋𝐼𝑌))
2110, 20impbii 209 . 2 (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝑓 ∈ dom (𝑋𝑁𝑌))
2221eqriv 2726 1 (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  Basecbs 17138  Invcinv 17670  Isociso 17671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-cat 17592  df-cid 17593  df-sect 17672  df-inv 17673  df-iso 17674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator