| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isoval2 | Structured version Visualization version GIF version | ||
| Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isoval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isoval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isoval2 | ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | isoval2.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | isoval2.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | 4, 1 | isorcl 49064 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝐶 ∈ Cat) |
| 6 | 4, 1, 2 | isorcl2 49065 | . . . . . 6 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑋 ∈ (Base‘𝐶)) |
| 8 | 6 | simprd 495 | . . . . 5 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑌 ∈ (Base‘𝐶)) |
| 9 | 2, 3, 5, 7, 8, 4 | isoval 17669 | . . . 4 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| 10 | 1, 9 | eleqtrd 2833 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 12 | 11 | eldm 5840 | . . . 4 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) ↔ ∃𝑔 𝑓(𝑋𝑁𝑌)𝑔) |
| 13 | id 22 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓(𝑋𝑁𝑌)𝑔) | |
| 14 | 3, 13 | invrcl 49055 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝐶 ∈ Cat) |
| 15 | 3, 13, 2 | invrcl2 49056 | . . . . . . 7 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 16 | 15 | simpld 494 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑋 ∈ (Base‘𝐶)) |
| 17 | 15 | simprd 495 | . . . . . 6 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑌 ∈ (Base‘𝐶)) |
| 18 | 2, 3, 14, 16, 17, 4, 13 | inviso1 17670 | . . . . 5 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 19 | 18 | exlimiv 1931 | . . . 4 ⊢ (∃𝑔 𝑓(𝑋𝑁𝑌)𝑔 → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 20 | 12, 19 | sylbi 217 | . . 3 ⊢ (𝑓 ∈ dom (𝑋𝑁𝑌) → 𝑓 ∈ (𝑋𝐼𝑌)) |
| 21 | 10, 20 | impbii 209 | . 2 ⊢ (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝑓 ∈ dom (𝑋𝑁𝑌)) |
| 22 | 21 | eqriv 2728 | 1 ⊢ (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Invcinv 17649 Isociso 17650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-cat 17571 df-cid 17572 df-sect 17651 df-inv 17652 df-iso 17653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |