Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoval2 Structured version   Visualization version   GIF version

Theorem isoval2 49066
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isoval2.n 𝑁 = (Inv‘𝐶)
isoval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isoval2 (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)

Proof of Theorem isoval2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ (𝑋𝐼𝑌))
2 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 isoval2.n . . . . 5 𝑁 = (Inv‘𝐶)
4 isoval2.i . . . . . 6 𝐼 = (Iso‘𝐶)
54, 1isorcl 49064 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝐶 ∈ Cat)
64, 1, 2isorcl2 49065 . . . . . 6 (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 494 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 495 . . . . 5 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑌 ∈ (Base‘𝐶))
92, 3, 5, 7, 8, 4isoval 17669 . . . 4 (𝑓 ∈ (𝑋𝐼𝑌) → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
101, 9eleqtrd 2833 . . 3 (𝑓 ∈ (𝑋𝐼𝑌) → 𝑓 ∈ dom (𝑋𝑁𝑌))
11 vex 3440 . . . . 5 𝑓 ∈ V
1211eldm 5840 . . . 4 (𝑓 ∈ dom (𝑋𝑁𝑌) ↔ ∃𝑔 𝑓(𝑋𝑁𝑌)𝑔)
13 id 22 . . . . . . 7 (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)𝑔)
143, 13invrcl 49055 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝐶 ∈ Cat)
153, 13, 2invrcl2 49056 . . . . . . 7 (𝑓(𝑋𝑁𝑌)𝑔 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
1615simpld 494 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝑋 ∈ (Base‘𝐶))
1715simprd 495 . . . . . 6 (𝑓(𝑋𝑁𝑌)𝑔𝑌 ∈ (Base‘𝐶))
182, 3, 14, 16, 17, 4, 13inviso1 17670 . . . . 5 (𝑓(𝑋𝑁𝑌)𝑔𝑓 ∈ (𝑋𝐼𝑌))
1918exlimiv 1931 . . . 4 (∃𝑔 𝑓(𝑋𝑁𝑌)𝑔𝑓 ∈ (𝑋𝐼𝑌))
2012, 19sylbi 217 . . 3 (𝑓 ∈ dom (𝑋𝑁𝑌) → 𝑓 ∈ (𝑋𝐼𝑌))
2110, 20impbii 209 . 2 (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝑓 ∈ dom (𝑋𝑁𝑌))
2221eqriv 2728 1 (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5091  dom cdm 5616  cfv 6481  (class class class)co 7346  Basecbs 17117  Invcinv 17649  Isociso 17650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cat 17571  df-cid 17572  df-sect 17651  df-inv 17652  df-iso 17653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator