| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofval2 | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| isofval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| isofval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isofval2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isofval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isofval2 | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofn 17701 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 3 | isofval2.i | . . . . . . 7 ⊢ 𝐼 = (Iso‘𝐶) | |
| 4 | 3 | fneq1i 6583 | . . . . . 6 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵)) |
| 5 | isofval2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 5, 5 | xpeq12i 5651 | . . . . . . 7 ⊢ (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | 6 | fneq2i 6584 | . . . . . 6 ⊢ ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 4, 7 | bitri 275 | . . . . 5 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 9 | 2, 8 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵)) |
| 10 | fnov 7484 | . . . 4 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 13 | isofval2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 14 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 15 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 17 | 5, 13, 14, 15, 16, 3 | isoval 17691 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦)) |
| 18 | 17 | mpoeq3dva 7430 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| 19 | 12, 18 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5621 dom cdm 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 Catccat 17589 Invcinv 17671 Isociso 17672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-inv 17674 df-iso 17675 |
| This theorem is referenced by: isorcl2 49039 isopropdlem 49045 |
| Copyright terms: Public domain | W3C validator |