| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofval2 | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| isofval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| isofval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isofval2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isofval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isofval2 | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofn 17791 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 3 | isofval2.i | . . . . . . 7 ⊢ 𝐼 = (Iso‘𝐶) | |
| 4 | 3 | fneq1i 6645 | . . . . . 6 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵)) |
| 5 | isofval2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 5, 5 | xpeq12i 5693 | . . . . . . 7 ⊢ (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | 6 | fneq2i 6646 | . . . . . 6 ⊢ ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 4, 7 | bitri 275 | . . . . 5 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 9 | 2, 8 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵)) |
| 10 | fnov 7546 | . . . 4 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 13 | isofval2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 14 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 15 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 17 | 5, 13, 14, 15, 16, 3 | isoval 17781 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦)) |
| 18 | 17 | mpoeq3dva 7492 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| 19 | 12, 18 | eqtrd 2769 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 × cxp 5663 dom cdm 5665 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17230 Catccat 17679 Invcinv 17761 Isociso 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-inv 17764 df-iso 17765 |
| This theorem is referenced by: isopropdlem 48914 |
| Copyright terms: Public domain | W3C validator |