| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofval2 | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| isofval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| isofval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isofval2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isofval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isofval2 | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofn 17743 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 3 | isofval2.i | . . . . . . 7 ⊢ 𝐼 = (Iso‘𝐶) | |
| 4 | 3 | fneq1i 6617 | . . . . . 6 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵)) |
| 5 | isofval2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 5, 5 | xpeq12i 5668 | . . . . . . 7 ⊢ (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | 6 | fneq2i 6618 | . . . . . 6 ⊢ ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 4, 7 | bitri 275 | . . . . 5 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 9 | 2, 8 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵)) |
| 10 | fnov 7522 | . . . 4 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 13 | isofval2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 14 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 15 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 17 | 5, 13, 14, 15, 16, 3 | isoval 17733 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦)) |
| 18 | 17 | mpoeq3dva 7468 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| 19 | 12, 18 | eqtrd 2765 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5638 dom cdm 5640 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 Basecbs 17185 Catccat 17631 Invcinv 17713 Isociso 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-inv 17716 df-iso 17717 |
| This theorem is referenced by: isorcl2 49011 isopropdlem 49017 |
| Copyright terms: Public domain | W3C validator |