Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofval2 Structured version   Visualization version   GIF version

Theorem isofval2 49193
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
isofval2.b 𝐵 = (Base‘𝐶)
isofval2.n 𝑁 = (Inv‘𝐶)
isofval2.c (𝜑𝐶 ∈ Cat)
isofval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isofval2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isofval2
StepHypRef Expression
1 isofval2.c . . 3 (𝜑𝐶 ∈ Cat)
2 isofn 17690 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
3 isofval2.i . . . . . . 7 𝐼 = (Iso‘𝐶)
43fneq1i 6586 . . . . . 6 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵))
5 isofval2.b . . . . . . . 8 𝐵 = (Base‘𝐶)
65, 5xpeq12i 5649 . . . . . . 7 (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))
76fneq2i 6587 . . . . . 6 ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
84, 7bitri 275 . . . . 5 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
92, 8sylibr 234 . . . 4 (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵))
10 fnov 7486 . . . 4 (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
119, 10sylib 218 . . 3 (𝐶 ∈ Cat → 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
121, 11syl 17 . 2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
13 isofval2.n . . . 4 𝑁 = (Inv‘𝐶)
1413ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝐶 ∈ Cat)
15 simp2 1137 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
16 simp3 1138 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
175, 13, 14, 15, 16, 3isoval 17680 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦))
1817mpoeq3dva 7432 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
1912, 18eqtrd 2768 1 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113   × cxp 5619  dom cdm 5621   Fn wfn 6484  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Catccat 17578  Invcinv 17660  Isociso 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-inv 17663  df-iso 17664
This theorem is referenced by:  isorcl2  49195  isopropdlem  49201
  Copyright terms: Public domain W3C validator