Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofval2 Structured version   Visualization version   GIF version

Theorem isofval2 48994
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
isofval2.b 𝐵 = (Base‘𝐶)
isofval2.n 𝑁 = (Inv‘𝐶)
isofval2.c (𝜑𝐶 ∈ Cat)
isofval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isofval2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isofval2
StepHypRef Expression
1 isofval2.c . . 3 (𝜑𝐶 ∈ Cat)
2 isofn 17713 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
3 isofval2.i . . . . . . 7 𝐼 = (Iso‘𝐶)
43fneq1i 6597 . . . . . 6 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵))
5 isofval2.b . . . . . . . 8 𝐵 = (Base‘𝐶)
65, 5xpeq12i 5659 . . . . . . 7 (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))
76fneq2i 6598 . . . . . 6 ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
84, 7bitri 275 . . . . 5 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
92, 8sylibr 234 . . . 4 (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵))
10 fnov 7500 . . . 4 (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
119, 10sylib 218 . . 3 (𝐶 ∈ Cat → 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
121, 11syl 17 . 2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
13 isofval2.n . . . 4 𝑁 = (Inv‘𝐶)
1413ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝐶 ∈ Cat)
15 simp2 1137 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
16 simp3 1138 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
175, 13, 14, 15, 16, 3isoval 17703 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦))
1817mpoeq3dva 7446 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
1912, 18eqtrd 2764 1 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   × cxp 5629  dom cdm 5631   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Catccat 17601  Invcinv 17683  Isociso 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-inv 17686  df-iso 17687
This theorem is referenced by:  isorcl2  48996  isopropdlem  49002
  Copyright terms: Public domain W3C validator