Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofval2 Structured version   Visualization version   GIF version

Theorem isofval2 49009
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
isofval2.b 𝐵 = (Base‘𝐶)
isofval2.n 𝑁 = (Inv‘𝐶)
isofval2.c (𝜑𝐶 ∈ Cat)
isofval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isofval2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isofval2
StepHypRef Expression
1 isofval2.c . . 3 (𝜑𝐶 ∈ Cat)
2 isofn 17743 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
3 isofval2.i . . . . . . 7 𝐼 = (Iso‘𝐶)
43fneq1i 6617 . . . . . 6 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵))
5 isofval2.b . . . . . . . 8 𝐵 = (Base‘𝐶)
65, 5xpeq12i 5668 . . . . . . 7 (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))
76fneq2i 6618 . . . . . 6 ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
84, 7bitri 275 . . . . 5 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
92, 8sylibr 234 . . . 4 (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵))
10 fnov 7522 . . . 4 (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
119, 10sylib 218 . . 3 (𝐶 ∈ Cat → 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
121, 11syl 17 . 2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
13 isofval2.n . . . 4 𝑁 = (Inv‘𝐶)
1413ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝐶 ∈ Cat)
15 simp2 1137 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
16 simp3 1138 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
175, 13, 14, 15, 16, 3isoval 17733 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦))
1817mpoeq3dva 7468 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
1912, 18eqtrd 2765 1 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Catccat 17631  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-inv 17716  df-iso 17717
This theorem is referenced by:  isorcl2  49011  isopropdlem  49017
  Copyright terms: Public domain W3C validator