Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofval2 Structured version   Visualization version   GIF version

Theorem isofval2 48909
Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
isofval2.b 𝐵 = (Base‘𝐶)
isofval2.n 𝑁 = (Inv‘𝐶)
isofval2.c (𝜑𝐶 ∈ Cat)
isofval2.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
isofval2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isofval2
StepHypRef Expression
1 isofval2.c . . 3 (𝜑𝐶 ∈ Cat)
2 isofn 17791 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
3 isofval2.i . . . . . . 7 𝐼 = (Iso‘𝐶)
43fneq1i 6645 . . . . . 6 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵))
5 isofval2.b . . . . . . . 8 𝐵 = (Base‘𝐶)
65, 5xpeq12i 5693 . . . . . . 7 (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶))
76fneq2i 6646 . . . . . 6 ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
84, 7bitri 275 . . . . 5 (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
92, 8sylibr 234 . . . 4 (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵))
10 fnov 7546 . . . 4 (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
119, 10sylib 218 . . 3 (𝐶 ∈ Cat → 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
121, 11syl 17 . 2 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)))
13 isofval2.n . . . 4 𝑁 = (Inv‘𝐶)
1413ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝐶 ∈ Cat)
15 simp2 1137 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
16 simp3 1138 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
175, 13, 14, 15, 16, 3isoval 17781 . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦))
1817mpoeq3dva 7492 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
1912, 18eqtrd 2769 1 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥𝑁𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107   × cxp 5663  dom cdm 5665   Fn wfn 6536  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17230  Catccat 17679  Invcinv 17761  Isociso 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-inv 17764  df-iso 17765
This theorem is referenced by:  isopropdlem  48914
  Copyright terms: Public domain W3C validator