| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofval2 | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| isofval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| isofval2.n | ⊢ 𝑁 = (Inv‘𝐶) |
| isofval2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isofval2.i | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| isofval2 | ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofval2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isofn 17690 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 3 | isofval2.i | . . . . . . 7 ⊢ 𝐼 = (Iso‘𝐶) | |
| 4 | 3 | fneq1i 6586 | . . . . . 6 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn (𝐵 × 𝐵)) |
| 5 | isofval2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 5, 5 | xpeq12i 5649 | . . . . . . 7 ⊢ (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)) |
| 7 | 6 | fneq2i 6587 | . . . . . 6 ⊢ ((Iso‘𝐶) Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | 4, 7 | bitri 275 | . . . . 5 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 9 | 2, 8 | sylibr 234 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐼 Fn (𝐵 × 𝐵)) |
| 10 | fnov 7486 | . . . 4 ⊢ (𝐼 Fn (𝐵 × 𝐵) ↔ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) | |
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦))) |
| 13 | isofval2.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 14 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 15 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 17 | 5, 13, 14, 15, 16, 3 | isoval 17680 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝐼𝑦) = dom (𝑥𝑁𝑦)) |
| 18 | 17 | mpoeq3dva 7432 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐼𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| 19 | 12, 18 | eqtrd 2768 | 1 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ dom (𝑥𝑁𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 × cxp 5619 dom cdm 5621 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 Catccat 17578 Invcinv 17660 Isociso 17661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-inv 17663 df-iso 17664 |
| This theorem is referenced by: isorcl2 49195 isopropdlem 49201 |
| Copyright terms: Public domain | W3C validator |