Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl2 Structured version   Visualization version   GIF version

Theorem isorcl2 49065
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
isorcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
isorcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem isorcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 isorcl2.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2731 . . . . 5 (Inv‘𝐶) = (Inv‘𝐶)
4 isorcl.i . . . . . 6 𝐼 = (Iso‘𝐶)
54, 1isorcl 49064 . . . . 5 (𝜑𝐶 ∈ Cat)
62, 3, 5, 4isofval2 49063 . . . 4 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦)))
76oveqd 7363 . . 3 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌))
81, 7eleqtrd 2833 . 2 (𝜑𝐹 ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌))
9 eqid 2731 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))
109elmpocl 7587 . 2 (𝐹 ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌) → (𝑋𝐵𝑌𝐵))
118, 10syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  dom cdm 5616  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  Invcinv 17649  Isociso 17650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-inv 17652  df-iso 17653
This theorem is referenced by:  isoval2  49066  catcisoi  49431
  Copyright terms: Public domain W3C validator