Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorcl2 Structured version   Visualization version   GIF version

Theorem isorcl2 48951
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
isorcl.i 𝐼 = (Iso‘𝐶)
isorcl.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
isorcl2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
isorcl2 (𝜑 → (𝑋𝐵𝑌𝐵))

Proof of Theorem isorcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorcl.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 isorcl2.b . . . . 5 𝐵 = (Base‘𝐶)
3 eqid 2730 . . . . 5 (Inv‘𝐶) = (Inv‘𝐶)
4 isorcl.i . . . . . 6 𝐼 = (Iso‘𝐶)
54, 1isorcl 48950 . . . . 5 (𝜑𝐶 ∈ Cat)
62, 3, 5, 4isofval2 48949 . . . 4 (𝜑𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦)))
76oveqd 7411 . . 3 (𝜑 → (𝑋𝐼𝑌) = (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌))
81, 7eleqtrd 2831 . 2 (𝜑𝐹 ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌))
9 eqid 2730 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))
109elmpocl 7637 . 2 (𝐹 ∈ (𝑋(𝑥𝐵, 𝑦𝐵 ↦ dom (𝑥(Inv‘𝐶)𝑦))𝑌) → (𝑋𝐵𝑌𝐵))
118, 10syl 17 1 (𝜑 → (𝑋𝐵𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5646  cfv 6519  (class class class)co 7394  cmpo 7396  Basecbs 17185  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-inv 17716  df-iso 17717
This theorem is referenced by:  isoval2  48952  catcisoi  49292
  Copyright terms: Public domain W3C validator