| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cznnring | Structured version Visualization version GIF version | ||
| Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
| cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
| cznrng.0 | ⊢ 0 = (0g‘𝑌) |
| Ref | Expression |
|---|---|
| cznnring | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘𝑋) = (mulGrp‘𝑋) | |
| 2 | cznrng.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 3 | cznrng.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | cznrng.x | . . . . . . . 8 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
| 5 | 2, 3, 4 | cznrnglem 48247 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑋) |
| 6 | 1, 5 | mgpbas 20054 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑋)) |
| 7 | 4 | fveq2i 6861 | . . . . . . . 8 ⊢ (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 8 | 2 | fvexi 6872 | . . . . . . . . 9 ⊢ 𝑌 ∈ V |
| 9 | 3 | fvexi 6872 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V |
| 10 | 9, 9 | mpoex 8058 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 11 | mulridx 17258 | . . . . . . . . . 10 ⊢ .r = Slot (.r‘ndx) | |
| 12 | 11 | setsid 17177 | . . . . . . . . 9 ⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 14 | 7, 13 | mgpplusg 20053 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
| 15 | 14 | eqcomi 2738 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
| 17 | eluz2 12799 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
| 18 | 1lt2 12352 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 19 | 1red 11175 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 20 | 2re 12260 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℝ | |
| 21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 22 | zre 12533 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 23 | ltletr 11266 | . . . . . . . . . . . . . 14 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
| 24 | 19, 21, 22, 23 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) |
| 25 | 24 | expcomd 416 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))) |
| 26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))) |
| 27 | 26 | 3imp 1110 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁)) |
| 28 | 18, 27 | mpi 20 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
| 29 | 17, 28 | sylbi 217 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
| 30 | eluz2nn 12847 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 31 | 2, 3 | znhash 21468 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| 32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘𝐵) = 𝑁) |
| 33 | 29, 32 | breqtrrd 5135 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < (♯‘𝐵)) |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 1 < (♯‘𝐵)) |
| 35 | 6, 15, 16, 34 | copisnmnd 48157 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∉ Mnd) |
| 36 | df-nel 3030 | . . . . 5 ⊢ ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd) |
| 38 | 37 | intn3an2d 1482 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 39 | eqid 2729 | . . . 4 ⊢ (+g‘𝑋) = (+g‘𝑋) | |
| 40 | 4 | eqcomi 2738 | . . . . 5 ⊢ (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
| 41 | 40 | fveq2i 6861 | . . . 4 ⊢ (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
| 42 | 5, 1, 39, 41 | isring 20146 | . . 3 ⊢ (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 43 | 38, 42 | sylnibr 329 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑋 ∈ Ring) |
| 44 | df-nel 3030 | . 2 ⊢ (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 Vcvv 3447 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝcr 11067 1c1 11069 < clt 11208 ≤ cle 11209 ℕcn 12186 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 ♯chash 14295 sSet csts 17133 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 Mndcmnd 18661 Grpcgrp 18865 mulGrpcmgp 20049 Ringcrg 20142 ℤ/nℤczn 21412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-hash 14296 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-zn 21416 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |