| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cznnring | Structured version Visualization version GIF version | ||
| Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
| cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
| cznrng.0 | ⊢ 0 = (0g‘𝑌) |
| Ref | Expression |
|---|---|
| cznnring | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . 7 ⊢ (mulGrp‘𝑋) = (mulGrp‘𝑋) | |
| 2 | cznrng.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 3 | cznrng.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | cznrng.x | . . . . . . . 8 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
| 5 | 2, 3, 4 | cznrnglem 48383 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑋) |
| 6 | 1, 5 | mgpbas 20065 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑋)) |
| 7 | 4 | fveq2i 6831 | . . . . . . . 8 ⊢ (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 8 | 2 | fvexi 6842 | . . . . . . . . 9 ⊢ 𝑌 ∈ V |
| 9 | 3 | fvexi 6842 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V |
| 10 | 9, 9 | mpoex 8017 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 11 | mulridx 17201 | . . . . . . . . . 10 ⊢ .r = Slot (.r‘ndx) | |
| 12 | 11 | setsid 17120 | . . . . . . . . 9 ⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 14 | 7, 13 | mgpplusg 20064 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
| 15 | 14 | eqcomi 2742 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
| 17 | eluz2 12744 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
| 18 | 1lt2 12298 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 19 | 1red 11120 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 20 | 2re 12206 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℝ | |
| 21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 22 | zre 12479 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 23 | ltletr 11212 | . . . . . . . . . . . . . 14 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
| 24 | 19, 21, 22, 23 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) |
| 25 | 24 | expcomd 416 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))) |
| 26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))) |
| 27 | 26 | 3imp 1110 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁)) |
| 28 | 18, 27 | mpi 20 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
| 29 | 17, 28 | sylbi 217 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
| 30 | eluz2nn 12788 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 31 | 2, 3 | znhash 21497 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| 32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘𝐵) = 𝑁) |
| 33 | 29, 32 | breqtrrd 5121 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < (♯‘𝐵)) |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 1 < (♯‘𝐵)) |
| 35 | 6, 15, 16, 34 | copisnmnd 48293 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∉ Mnd) |
| 36 | df-nel 3034 | . . . . 5 ⊢ ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd) |
| 38 | 37 | intn3an2d 1482 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 39 | eqid 2733 | . . . 4 ⊢ (+g‘𝑋) = (+g‘𝑋) | |
| 40 | 4 | eqcomi 2742 | . . . . 5 ⊢ (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
| 41 | 40 | fveq2i 6831 | . . . 4 ⊢ (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
| 42 | 5, 1, 39, 41 | isring 20157 | . . 3 ⊢ (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 43 | 38, 42 | sylnibr 329 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑋 ∈ Ring) |
| 44 | df-nel 3034 | . 2 ⊢ (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 ∀wral 3048 Vcvv 3437 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ℝcr 11012 1c1 11014 < clt 11153 ≤ cle 11154 ℕcn 12132 2c2 12187 ℤcz 12475 ℤ≥cuz 12738 ♯chash 14239 sSet csts 17076 ndxcnx 17106 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 0gc0g 17345 Mndcmnd 18644 Grpcgrp 18848 mulGrpcmgp 20060 Ringcrg 20153 ℤ/nℤczn 21441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-hash 14240 df-dvds 16166 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-0g 17347 df-imas 17414 df-qus 17415 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-lsp 20907 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-2idl 21189 df-cnfld 21294 df-zring 21386 df-zrh 21442 df-zn 21445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |