Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznnring Structured version   Visualization version   GIF version

Theorem cznnring 45006
 Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznnring ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznnring
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘𝑋)
2 cznrng.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
4 cznrng.x . . . . . . . 8 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
52, 3, 4cznrnglem 45003 . . . . . . 7 𝐵 = (Base‘𝑋)
61, 5mgpbas 19327 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑋))
74fveq2i 6666 . . . . . . . 8 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
82fvexi 6677 . . . . . . . . 9 𝑌 ∈ V
93fvexi 6677 . . . . . . . . . 10 𝐵 ∈ V
109, 9mpoex 7788 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
11 mulrid 16688 . . . . . . . . . 10 .r = Slot (.r‘ndx)
1211setsid 16610 . . . . . . . . 9 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
138, 10, 12mp2an 691 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
147, 13mgpplusg 19325 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
1514eqcomi 2767 . . . . . 6 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
16 simpr 488 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝐶𝐵)
17 eluz2 12301 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
18 1lt2 11858 . . . . . . . . . 10 1 < 2
19 1red 10693 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 1 ∈ ℝ)
20 2re 11761 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 2 ∈ ℝ)
22 zre 12037 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
23 ltletr 10783 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2419, 21, 22, 23syl3anc 1368 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2524expcomd 420 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))
2625a1i 11 . . . . . . . . . . 11 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))))
27263imp 1108 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁))
2818, 27mpi 20 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
2917, 28sylbi 220 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
30 eluz2nn 12337 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
312, 3znhash 20340 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
3230, 31syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (♯‘𝐵) = 𝑁)
3329, 32breqtrrd 5064 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 < (♯‘𝐵))
3433adantr 484 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 1 < (♯‘𝐵))
356, 15, 16, 34copisnmnd 44855 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∉ Mnd)
36 df-nel 3056 . . . . 5 ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd)
3735, 36sylib 221 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd)
3837intn3an2d 1477 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
39 eqid 2758 . . . 4 (+g𝑋) = (+g𝑋)
404eqcomi 2767 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
4140fveq2i 6666 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
425, 1, 39, 41isring 19383 . . 3 (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
4338, 42sylnibr 332 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ 𝑋 ∈ Ring)
44 df-nel 3056 . 2 (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring)
4543, 44sylibr 237 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∉ wnel 3055  ∀wral 3070  Vcvv 3409  ⟨cop 4531   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158  ℝcr 10587  1c1 10589   < clt 10726   ≤ cle 10727  ℕcn 11687  2c2 11742  ℤcz 12033  ℤ≥cuz 12295  ♯chash 13753  ndxcnx 16552   sSet csts 16553  Basecbs 16555  +gcplusg 16637  .rcmulr 16638  0gc0g 16785  Mndcmnd 17991  Grpcgrp 18183  mulGrpcmgp 19321  Ringcrg 19379  ℤ/nℤczn 20286 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-hash 13754  df-dvds 15669  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-0g 16787  df-imas 16853  df-qus 16854  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-mhm 18036  df-grp 18186  df-minusg 18187  df-sbg 18188  df-mulg 18306  df-subg 18357  df-nsg 18358  df-eqg 18359  df-ghm 18437  df-cmn 18989  df-abl 18990  df-mgp 19322  df-ur 19334  df-ring 19381  df-cring 19382  df-oppr 19458  df-dvdsr 19476  df-rnghom 19552  df-subrg 19615  df-lmod 19718  df-lss 19786  df-lsp 19826  df-sra 20026  df-rgmod 20027  df-lidl 20028  df-rsp 20029  df-2idl 20087  df-cnfld 20181  df-zring 20253  df-zrh 20287  df-zn 20290 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator