| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cznnring | Structured version Visualization version GIF version | ||
| Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
| cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
| cznrng.0 | ⊢ 0 = (0g‘𝑌) |
| Ref | Expression |
|---|---|
| cznnring | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘𝑋) = (mulGrp‘𝑋) | |
| 2 | cznrng.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 3 | cznrng.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
| 4 | cznrng.x | . . . . . . . 8 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
| 5 | 2, 3, 4 | cznrnglem 48244 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑋) |
| 6 | 1, 5 | mgpbas 20048 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑋)) |
| 7 | 4 | fveq2i 6829 | . . . . . . . 8 ⊢ (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 8 | 2 | fvexi 6840 | . . . . . . . . 9 ⊢ 𝑌 ∈ V |
| 9 | 3 | fvexi 6840 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V |
| 10 | 9, 9 | mpoex 8021 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| 11 | mulridx 17217 | . . . . . . . . . 10 ⊢ .r = Slot (.r‘ndx) | |
| 12 | 11 | setsid 17136 | . . . . . . . . 9 ⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
| 14 | 7, 13 | mgpplusg 20047 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
| 15 | 14 | eqcomi 2738 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
| 17 | eluz2 12759 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
| 18 | 1lt2 12312 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 19 | 1red 11135 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 20 | 2re 12220 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℝ | |
| 21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 22 | zre 12493 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 23 | ltletr 11226 | . . . . . . . . . . . . . 14 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
| 24 | 19, 21, 22, 23 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) |
| 25 | 24 | expcomd 416 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))) |
| 26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))) |
| 27 | 26 | 3imp 1110 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁)) |
| 28 | 18, 27 | mpi 20 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
| 29 | 17, 28 | sylbi 217 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
| 30 | eluz2nn 12807 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 31 | 2, 3 | znhash 21483 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| 32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘𝐵) = 𝑁) |
| 33 | 29, 32 | breqtrrd 5123 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < (♯‘𝐵)) |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 1 < (♯‘𝐵)) |
| 35 | 6, 15, 16, 34 | copisnmnd 48154 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∉ Mnd) |
| 36 | df-nel 3030 | . . . . 5 ⊢ ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd) |
| 38 | 37 | intn3an2d 1482 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 39 | eqid 2729 | . . . 4 ⊢ (+g‘𝑋) = (+g‘𝑋) | |
| 40 | 4 | eqcomi 2738 | . . . . 5 ⊢ (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
| 41 | 40 | fveq2i 6829 | . . . 4 ⊢ (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
| 42 | 5, 1, 39, 41 | isring 20140 | . . 3 ⊢ (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
| 43 | 38, 42 | sylnibr 329 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑋 ∈ Ring) |
| 44 | df-nel 3030 | . 2 ⊢ (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 Vcvv 3438 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℝcr 11027 1c1 11029 < clt 11168 ≤ cle 11169 ℕcn 12146 2c2 12201 ℤcz 12489 ℤ≥cuz 12753 ♯chash 14255 sSet csts 17092 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 0gc0g 17361 Mndcmnd 18626 Grpcgrp 18830 mulGrpcmgp 20043 Ringcrg 20136 ℤ/nℤczn 21427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-hash 14256 df-dvds 16182 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-imas 17430 df-qus 17431 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-zn 21431 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |