Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznnring Structured version   Visualization version   GIF version

Theorem cznnring 48183
Description: The ring constructed from a ℤ/n structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznnring ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznnring
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘𝑋)
2 cznrng.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
4 cznrng.x . . . . . . . 8 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
52, 3, 4cznrnglem 48180 . . . . . . 7 𝐵 = (Base‘𝑋)
61, 5mgpbas 20143 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑋))
74fveq2i 6908 . . . . . . . 8 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
82fvexi 6919 . . . . . . . . 9 𝑌 ∈ V
93fvexi 6919 . . . . . . . . . 10 𝐵 ∈ V
109, 9mpoex 8105 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
11 mulridx 17339 . . . . . . . . . 10 .r = Slot (.r‘ndx)
1211setsid 17245 . . . . . . . . 9 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
138, 10, 12mp2an 692 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
147, 13mgpplusg 20142 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
1514eqcomi 2745 . . . . . 6 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
16 simpr 484 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝐶𝐵)
17 eluz2 12885 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
18 1lt2 12438 . . . . . . . . . 10 1 < 2
19 1red 11263 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 1 ∈ ℝ)
20 2re 12341 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 2 ∈ ℝ)
22 zre 12619 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
23 ltletr 11354 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2419, 21, 22, 23syl3anc 1372 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2524expcomd 416 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))
2625a1i 11 . . . . . . . . . . 11 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))))
27263imp 1110 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁))
2818, 27mpi 20 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
2917, 28sylbi 217 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
30 eluz2nn 12925 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
312, 3znhash 21578 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
3230, 31syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (♯‘𝐵) = 𝑁)
3329, 32breqtrrd 5170 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 < (♯‘𝐵))
3433adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 1 < (♯‘𝐵))
356, 15, 16, 34copisnmnd 48090 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∉ Mnd)
36 df-nel 3046 . . . . 5 ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd)
3735, 36sylib 218 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd)
3837intn3an2d 1481 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
39 eqid 2736 . . . 4 (+g𝑋) = (+g𝑋)
404eqcomi 2745 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
4140fveq2i 6908 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
425, 1, 39, 41isring 20235 . . 3 (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
4338, 42sylnibr 329 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ 𝑋 ∈ Ring)
44 df-nel 3046 . 2 (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring)
4543, 44sylibr 234 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wnel 3045  wral 3060  Vcvv 3479  cop 4631   class class class wbr 5142  cfv 6560  (class class class)co 7432  cmpo 7434  cr 11155  1c1 11157   < clt 11296  cle 11297  cn 12267  2c2 12322  cz 12615  cuz 12879  chash 14370   sSet csts 17201  ndxcnx 17231  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  Mndcmnd 18748  Grpcgrp 18952  mulGrpcmgp 20138  Ringcrg 20231  ℤ/nczn 21514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-hash 14371  df-dvds 16292  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-zn 21518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator