Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznnring Structured version   Visualization version   GIF version

Theorem cznnring 46224
Description: The ring constructed from a ℤ/n structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznnring ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznnring
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘𝑋)
2 cznrng.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
4 cznrng.x . . . . . . . 8 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
52, 3, 4cznrnglem 46221 . . . . . . 7 𝐵 = (Base‘𝑋)
61, 5mgpbas 19898 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑋))
74fveq2i 6843 . . . . . . . 8 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
82fvexi 6854 . . . . . . . . 9 𝑌 ∈ V
93fvexi 6854 . . . . . . . . . 10 𝐵 ∈ V
109, 9mpoex 8009 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
11 mulrid 17172 . . . . . . . . . 10 .r = Slot (.r‘ndx)
1211setsid 17077 . . . . . . . . 9 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
138, 10, 12mp2an 690 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
147, 13mgpplusg 19896 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
1514eqcomi 2745 . . . . . 6 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
16 simpr 485 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝐶𝐵)
17 eluz2 12766 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
18 1lt2 12321 . . . . . . . . . 10 1 < 2
19 1red 11153 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 1 ∈ ℝ)
20 2re 12224 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 2 ∈ ℝ)
22 zre 12500 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
23 ltletr 11244 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2419, 21, 22, 23syl3anc 1371 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2524expcomd 417 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))
2625a1i 11 . . . . . . . . . . 11 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))))
27263imp 1111 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁))
2818, 27mpi 20 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
2917, 28sylbi 216 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
30 eluz2nn 12806 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
312, 3znhash 20961 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
3230, 31syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (♯‘𝐵) = 𝑁)
3329, 32breqtrrd 5132 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 < (♯‘𝐵))
3433adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 1 < (♯‘𝐵))
356, 15, 16, 34copisnmnd 46073 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∉ Mnd)
36 df-nel 3049 . . . . 5 ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd)
3735, 36sylib 217 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd)
3837intn3an2d 1480 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
39 eqid 2736 . . . 4 (+g𝑋) = (+g𝑋)
404eqcomi 2745 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
4140fveq2i 6843 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
425, 1, 39, 41isring 19964 . . 3 (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
4338, 42sylnibr 328 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ 𝑋 ∈ Ring)
44 df-nel 3049 . 2 (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring)
4543, 44sylibr 233 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3048  wral 3063  Vcvv 3444  cop 4591   class class class wbr 5104  cfv 6494  (class class class)co 7354  cmpo 7356  cr 11047  1c1 11049   < clt 11186  cle 11187  cn 12150  2c2 12205  cz 12496  cuz 12760  chash 14227   sSet csts 17032  ndxcnx 17062  Basecbs 17080  +gcplusg 17130  .rcmulr 17131  0gc0g 17318  Mndcmnd 18553  Grpcgrp 18745  mulGrpcmgp 19892  Ringcrg 19960  ℤ/nczn 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125  ax-pre-sup 11126  ax-addf 11127  ax-mulf 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-tpos 8154  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-er 8645  df-ec 8647  df-qs 8651  df-map 8764  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-sup 9375  df-inf 9376  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-div 11810  df-nn 12151  df-2 12213  df-3 12214  df-4 12215  df-5 12216  df-6 12217  df-7 12218  df-8 12219  df-9 12220  df-n0 12411  df-xnn0 12483  df-z 12497  df-dec 12616  df-uz 12761  df-rp 12913  df-fz 13422  df-fzo 13565  df-fl 13694  df-mod 13772  df-seq 13904  df-hash 14228  df-dvds 16134  df-struct 17016  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-ress 17110  df-plusg 17143  df-mulr 17144  df-starv 17145  df-sca 17146  df-vsca 17147  df-ip 17148  df-tset 17149  df-ple 17150  df-ds 17152  df-unif 17153  df-0g 17320  df-imas 17387  df-qus 17388  df-mgm 18494  df-sgrp 18543  df-mnd 18554  df-mhm 18598  df-grp 18748  df-minusg 18749  df-sbg 18750  df-mulg 18869  df-subg 18921  df-nsg 18922  df-eqg 18923  df-ghm 19002  df-cmn 19560  df-abl 19561  df-mgp 19893  df-ur 19910  df-ring 19962  df-cring 19963  df-oppr 20045  df-dvdsr 20066  df-rnghom 20142  df-subrg 20216  df-lmod 20320  df-lss 20389  df-lsp 20429  df-sra 20629  df-rgmod 20630  df-lidl 20631  df-rsp 20632  df-2idl 20698  df-cnfld 20793  df-zring 20866  df-zrh 20900  df-zn 20903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator