Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznnring Structured version   Visualization version   GIF version

Theorem cznnring 48386
Description: The ring constructed from a ℤ/n structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznnring ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznnring
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘𝑋)
2 cznrng.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
4 cznrng.x . . . . . . . 8 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
52, 3, 4cznrnglem 48383 . . . . . . 7 𝐵 = (Base‘𝑋)
61, 5mgpbas 20065 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑋))
74fveq2i 6831 . . . . . . . 8 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
82fvexi 6842 . . . . . . . . 9 𝑌 ∈ V
93fvexi 6842 . . . . . . . . . 10 𝐵 ∈ V
109, 9mpoex 8017 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
11 mulridx 17201 . . . . . . . . . 10 .r = Slot (.r‘ndx)
1211setsid 17120 . . . . . . . . 9 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
138, 10, 12mp2an 692 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
147, 13mgpplusg 20064 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
1514eqcomi 2742 . . . . . 6 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
16 simpr 484 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝐶𝐵)
17 eluz2 12744 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
18 1lt2 12298 . . . . . . . . . 10 1 < 2
19 1red 11120 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 1 ∈ ℝ)
20 2re 12206 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2120a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 2 ∈ ℝ)
22 zre 12479 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
23 ltletr 11212 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2419, 21, 22, 23syl3anc 1373 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2524expcomd 416 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))
2625a1i 11 . . . . . . . . . . 11 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))))
27263imp 1110 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁))
2818, 27mpi 20 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
2917, 28sylbi 217 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
30 eluz2nn 12788 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
312, 3znhash 21497 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
3230, 31syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (♯‘𝐵) = 𝑁)
3329, 32breqtrrd 5121 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 < (♯‘𝐵))
3433adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 1 < (♯‘𝐵))
356, 15, 16, 34copisnmnd 48293 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∉ Mnd)
36 df-nel 3034 . . . . 5 ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd)
3735, 36sylib 218 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd)
3837intn3an2d 1482 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
39 eqid 2733 . . . 4 (+g𝑋) = (+g𝑋)
404eqcomi 2742 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
4140fveq2i 6831 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
425, 1, 39, 41isring 20157 . . 3 (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
4338, 42sylnibr 329 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ 𝑋 ∈ Ring)
44 df-nel 3034 . 2 (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring)
4543, 44sylibr 234 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wnel 3033  wral 3048  Vcvv 3437  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  cmpo 7354  cr 11012  1c1 11014   < clt 11153  cle 11154  cn 12132  2c2 12187  cz 12475  cuz 12738  chash 14239   sSet csts 17076  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345  Mndcmnd 18644  Grpcgrp 18848  mulGrpcmgp 20060  Ringcrg 20153  ℤ/nczn 21441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-hash 14240  df-dvds 16166  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-0g 17347  df-imas 17414  df-qus 17415  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-nsg 19039  df-eqg 19040  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-2idl 21189  df-cnfld 21294  df-zring 21386  df-zrh 21442  df-zn 21445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator