Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cznnring | Structured version Visualization version GIF version |
Description: The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
cznrng.0 | ⊢ 0 = (0g‘𝑌) |
Ref | Expression |
---|---|
cznnring | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . . . . 7 ⊢ (mulGrp‘𝑋) = (mulGrp‘𝑋) | |
2 | cznrng.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | cznrng.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑌) | |
4 | cznrng.x | . . . . . . . 8 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
5 | 2, 3, 4 | cznrnglem 45003 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑋) |
6 | 1, 5 | mgpbas 19327 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑋)) |
7 | 4 | fveq2i 6666 | . . . . . . . 8 ⊢ (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
8 | 2 | fvexi 6677 | . . . . . . . . 9 ⊢ 𝑌 ∈ V |
9 | 3 | fvexi 6677 | . . . . . . . . . 10 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 7788 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
11 | mulrid 16688 | . . . . . . . . . 10 ⊢ .r = Slot (.r‘ndx) | |
12 | 11 | setsid 16610 | . . . . . . . . 9 ⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
13 | 8, 10, 12 | mp2an 691 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
14 | 7, 13 | mgpplusg 19325 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
15 | 14 | eqcomi 2767 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
16 | simpr 488 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
17 | eluz2 12301 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
18 | 1lt2 11858 | . . . . . . . . . 10 ⊢ 1 < 2 | |
19 | 1red 10693 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
20 | 2re 11761 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℝ | |
21 | 20 | a1i 11 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
22 | zre 12037 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
23 | ltletr 10783 | . . . . . . . . . . . . . 14 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
24 | 19, 21, 22, 23 | syl3anc 1368 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) |
25 | 24 | expcomd 420 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))) |
26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))) |
27 | 26 | 3imp 1108 | . . . . . . . . . 10 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁)) |
28 | 18, 27 | mpi 20 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
29 | 17, 28 | sylbi 220 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
30 | eluz2nn 12337 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
31 | 2, 3 | znhash 20340 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (♯‘𝐵) = 𝑁) |
33 | 29, 32 | breqtrrd 5064 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < (♯‘𝐵)) |
34 | 33 | adantr 484 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 1 < (♯‘𝐵)) |
35 | 6, 15, 16, 34 | copisnmnd 44855 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∉ Mnd) |
36 | df-nel 3056 | . . . . 5 ⊢ ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd) | |
37 | 35, 36 | sylib 221 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd) |
38 | 37 | intn3an2d 1477 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
39 | eqid 2758 | . . . 4 ⊢ (+g‘𝑋) = (+g‘𝑋) | |
40 | 4 | eqcomi 2767 | . . . . 5 ⊢ (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
41 | 40 | fveq2i 6666 | . . . 4 ⊢ (.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
42 | 5, 1, 39, 41 | isring 19383 | . . 3 ⊢ (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))(𝑏(+g‘𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑏)(+g‘𝑋)(𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)) ∧ ((𝑎(+g‘𝑋)𝑏)(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐) = ((𝑎(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐)(+g‘𝑋)(𝑏(.r‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))𝑐))))) |
43 | 38, 42 | sylnibr 332 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑋 ∈ Ring) |
44 | df-nel 3056 | . 2 ⊢ (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring) | |
45 | 43, 44 | sylibr 237 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∉ wnel 3055 ∀wral 3070 Vcvv 3409 〈cop 4531 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ℝcr 10587 1c1 10589 < clt 10726 ≤ cle 10727 ℕcn 11687 2c2 11742 ℤcz 12033 ℤ≥cuz 12295 ♯chash 13753 ndxcnx 16552 sSet csts 16553 Basecbs 16555 +gcplusg 16637 .rcmulr 16638 0gc0g 16785 Mndcmnd 17991 Grpcgrp 18183 mulGrpcmgp 19321 Ringcrg 19379 ℤ/nℤczn 20286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-ec 8307 df-qs 8311 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-xnn0 12020 df-z 12034 df-dec 12151 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-seq 13432 df-hash 13754 df-dvds 15669 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-0g 16787 df-imas 16853 df-qus 16854 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-nsg 18358 df-eqg 18359 df-ghm 18437 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-cring 19382 df-oppr 19458 df-dvdsr 19476 df-rnghom 19552 df-subrg 19615 df-lmod 19718 df-lss 19786 df-lsp 19826 df-sra 20026 df-rgmod 20027 df-lidl 20028 df-rsp 20029 df-2idl 20087 df-cnfld 20181 df-zring 20253 df-zrh 20287 df-zn 20290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |