MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isringd Structured version   Visualization version   GIF version

Theorem isringd 20207
Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isringd.b (𝜑𝐵 = (Base‘𝑅))
isringd.p (𝜑+ = (+g𝑅))
isringd.t (𝜑· = (.r𝑅))
isringd.g (𝜑𝑅 ∈ Grp)
isringd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
isringd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
isringd.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
isringd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
isringd.u (𝜑1𝐵)
isringd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
isringd.h ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
isringd (𝜑𝑅 ∈ Ring)
Distinct variable groups:   𝑥, 1   𝑥,𝑦,𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   1 (𝑦,𝑧)

Proof of Theorem isringd
StepHypRef Expression
1 isringd.g . 2 (𝜑𝑅 ∈ Grp)
2 isringd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
3 eqid 2730 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
53, 4mgpbas 20061 . . . 4 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
62, 5eqtrdi 2781 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
7 isringd.t . . . 4 (𝜑· = (.r𝑅))
8 eqid 2730 . . . . 5 (.r𝑅) = (.r𝑅)
93, 8mgpplusg 20060 . . . 4 (.r𝑅) = (+g‘(mulGrp‘𝑅))
107, 9eqtrdi 2781 . . 3 (𝜑· = (+g‘(mulGrp‘𝑅)))
11 isringd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
12 isringd.a . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
13 isringd.u . . 3 (𝜑1𝐵)
14 isringd.i . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
15 isringd.h . . 3 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
166, 10, 11, 12, 13, 14, 15ismndd 18690 . 2 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
172eleq2d 2815 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
182eleq2d 2815 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
192eleq2d 2815 . . . . . 6 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
2017, 18, 193anbi123d 1438 . . . . 5 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
2120biimpar 477 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥𝐵𝑦𝐵𝑧𝐵))
22 isringd.d . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
237adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → · = (.r𝑅))
24 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 = 𝑥)
25 isringd.p . . . . . . . 8 (𝜑+ = (+g𝑅))
2625oveqdr 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
2723, 24, 26oveq123d 7411 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)))
2825adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → + = (+g𝑅))
297oveqdr 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
307oveqdr 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑧) = (𝑥(.r𝑅)𝑧))
3128, 29, 30oveq123d 7411 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)))
3222, 27, 313eqtr3d 2773 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)))
33 isringd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3425oveqdr 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
35 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧 = 𝑧)
3623, 34, 35oveq123d 7411 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧))
377oveqdr 7418 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
3828, 30, 37oveq123d 7411 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
3933, 36, 383eqtr3d 2773 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4032, 39jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
4121, 40syldan 591 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
4241ralrimivvva 3184 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
43 eqid 2730 . . 3 (+g𝑅) = (+g𝑅)
444, 3, 43, 8isring 20153 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
451, 16, 42, 44syl3anbrc 1344 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Mndcmnd 18668  Grpcgrp 18872  mulGrpcmgp 20056  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mgp 20057  df-ring 20151
This theorem is referenced by:  iscrngd  20208  imasring  20246  issubrg2  20508  psrring  21886  matring  22337  erngdvlem3  40991  erngdvlem3-rN  40999  mendring  43184
  Copyright terms: Public domain W3C validator