MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isringd Structured version   Visualization version   GIF version

Theorem isringd 19313
Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isringd.b (𝜑𝐵 = (Base‘𝑅))
isringd.p (𝜑+ = (+g𝑅))
isringd.t (𝜑· = (.r𝑅))
isringd.g (𝜑𝑅 ∈ Grp)
isringd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
isringd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
isringd.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
isringd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
isringd.u (𝜑1𝐵)
isringd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
isringd.h ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
isringd (𝜑𝑅 ∈ Ring)
Distinct variable groups:   𝑥, 1   𝑥,𝑦,𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   1 (𝑦,𝑧)

Proof of Theorem isringd
StepHypRef Expression
1 isringd.g . 2 (𝜑𝑅 ∈ Grp)
2 isringd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
3 eqid 2821 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
53, 4mgpbas 19223 . . . 4 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
62, 5syl6eq 2872 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
7 isringd.t . . . 4 (𝜑· = (.r𝑅))
8 eqid 2821 . . . . 5 (.r𝑅) = (.r𝑅)
93, 8mgpplusg 19221 . . . 4 (.r𝑅) = (+g‘(mulGrp‘𝑅))
107, 9syl6eq 2872 . . 3 (𝜑· = (+g‘(mulGrp‘𝑅)))
11 isringd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
12 isringd.a . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
13 isringd.u . . 3 (𝜑1𝐵)
14 isringd.i . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
15 isringd.h . . 3 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
166, 10, 11, 12, 13, 14, 15ismndd 17911 . 2 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
172eleq2d 2897 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
182eleq2d 2897 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
192eleq2d 2897 . . . . . 6 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
2017, 18, 193anbi123d 1433 . . . . 5 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
2120biimpar 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥𝐵𝑦𝐵𝑧𝐵))
22 isringd.d . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
237adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → · = (.r𝑅))
24 eqidd 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 = 𝑥)
25 isringd.p . . . . . . . 8 (𝜑+ = (+g𝑅))
2625oveqdr 7158 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
2723, 24, 26oveq123d 7151 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)))
2825adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → + = (+g𝑅))
297oveqdr 7158 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
307oveqdr 7158 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑧) = (𝑥(.r𝑅)𝑧))
3128, 29, 30oveq123d 7151 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)))
3222, 27, 313eqtr3d 2864 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)))
33 isringd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3425oveqdr 7158 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
35 eqidd 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧 = 𝑧)
3623, 34, 35oveq123d 7151 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧))
377oveqdr 7158 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
3828, 30, 37oveq123d 7151 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
3933, 36, 383eqtr3d 2864 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4032, 39jca 515 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
4121, 40syldan 594 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
4241ralrimivvva 3180 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
43 eqid 2821 . . 3 (+g𝑅) = (+g𝑅)
444, 3, 43, 8isring 19279 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
451, 16, 42, 44syl3anbrc 1340 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  cfv 6328  (class class class)co 7130  Basecbs 16461  +gcplusg 16543  .rcmulr 16544  Mndcmnd 17889  Grpcgrp 18081  mulGrpcmgp 19217  Ringcrg 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-plusg 16556  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mgp 19218  df-ring 19277
This theorem is referenced by:  iscrngd  19314  imasring  19347  opprring  19359  issubrg2  19530  psrring  20166  matring  21027  erngdvlem3  38164  erngdvlem3-rN  38172  mendring  39931
  Copyright terms: Public domain W3C validator