MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsringd Structured version   Visualization version   GIF version

Theorem prdsringd 20335
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsringd.y 𝑌 = (𝑆Xs𝑅)
prdsringd.i (𝜑𝐼𝑊)
prdsringd.s (𝜑𝑆𝑉)
prdsringd.r (𝜑𝑅:𝐼⟶Ring)
Assertion
Ref Expression
prdsringd (𝜑𝑌 ∈ Ring)

Proof of Theorem prdsringd
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsringd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsringd.i . . 3 (𝜑𝐼𝑊)
3 prdsringd.s . . 3 (𝜑𝑆𝑉)
4 prdsringd.r . . . 4 (𝜑𝑅:𝐼⟶Ring)
5 ringgrp 20256 . . . . 5 (𝑥 ∈ Ring → 𝑥 ∈ Grp)
65ssriv 3999 . . . 4 Ring ⊆ Grp
7 fss 6753 . . . 4 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 19081 . 2 (𝜑𝑌 ∈ Grp)
10 eqid 2735 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 mgpf 20266 . . . . 5 (mulGrp ↾ Ring):Ring⟶Mnd
12 fco2 6763 . . . . 5 (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1311, 4, 12sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1410, 2, 3, 13prdsmndd 18796 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd)
15 eqidd 2736 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
16 eqid 2735 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
174ffnd 6738 . . . . . 6 (𝜑𝑅 Fn 𝐼)
181, 16, 10, 2, 3, 17prdsmgp 20169 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
1918simpld 494 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
2018simprd 495 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
2120oveqdr 7459 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
2215, 19, 21mndpropd 18785 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ Mnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd))
2314, 22mpbird 257 . 2 (𝜑 → (mulGrp‘𝑌) ∈ Mnd)
244adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Ring)
2524ffvelcdmda 7104 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑅𝑤) ∈ Ring)
26 eqid 2735 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
273adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑆𝑉)
2827adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑆𝑉)
292adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝐼𝑊)
3029adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝐼𝑊)
3117adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑅 Fn 𝐼)
33 simplr1 1214 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑥 ∈ (Base‘𝑌))
34 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑤𝐼)
351, 26, 28, 30, 32, 33, 34prdsbasprj 17519 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑥𝑤) ∈ (Base‘(𝑅𝑤)))
36 simpr2 1194 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑦 ∈ (Base‘𝑌))
3736adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑦 ∈ (Base‘𝑌))
381, 26, 28, 30, 32, 37, 34prdsbasprj 17519 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑦𝑤) ∈ (Base‘(𝑅𝑤)))
39 simpr3 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑧 ∈ (Base‘𝑌))
4039adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑧 ∈ (Base‘𝑌))
411, 26, 28, 30, 32, 40, 34prdsbasprj 17519 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))
42 eqid 2735 . . . . . . . . 9 (Base‘(𝑅𝑤)) = (Base‘(𝑅𝑤))
43 eqid 2735 . . . . . . . . 9 (+g‘(𝑅𝑤)) = (+g‘(𝑅𝑤))
44 eqid 2735 . . . . . . . . 9 (.r‘(𝑅𝑤)) = (.r‘(𝑅𝑤))
4542, 43, 44ringdi 20278 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
4625, 35, 38, 41, 45syl13anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
47 eqid 2735 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
481, 26, 28, 30, 32, 37, 40, 47, 34prdsplusgfval 17521 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(+g𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤)))
4948oveq2d 7447 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))))
50 eqid 2735 . . . . . . . . 9 (.r𝑌) = (.r𝑌)
511, 26, 28, 30, 32, 33, 37, 50, 34prdsmulrfval 17523 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤)))
521, 26, 28, 30, 32, 33, 40, 50, 34prdsmulrfval 17523 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑧)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
5351, 52oveq12d 7449 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
5446, 49, 533eqtr4d 2785 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)))
5554mpteq2dva 5248 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
56 simpr1 1193 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑥 ∈ (Base‘𝑌))
57 ringmnd 20261 . . . . . . . . . 10 (𝑥 ∈ Ring → 𝑥 ∈ Mnd)
5857ssriv 3999 . . . . . . . . 9 Ring ⊆ Mnd
59 fss 6753 . . . . . . . . 9 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
604, 58, 59sylancl 586 . . . . . . . 8 (𝜑𝑅:𝐼⟶Mnd)
6160adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
621, 26, 47, 27, 29, 61, 36, 39prdsplusgcl 18794 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(+g𝑌)𝑧) ∈ (Base‘𝑌))
631, 26, 27, 29, 31, 56, 62, 50prdsmulrval 17522 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))))
641, 26, 50, 27, 29, 24, 56, 36prdsmulrcl 20334 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑦) ∈ (Base‘𝑌))
651, 26, 50, 27, 29, 24, 56, 39prdsmulrcl 20334 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑧) ∈ (Base‘𝑌))
661, 26, 27, 29, 31, 64, 65, 47prdsplusgval 17520 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
6755, 63, 663eqtr4d 2785 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)))
6842, 43, 44ringdir 20279 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
6925, 35, 38, 41, 68syl13anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
701, 26, 28, 30, 32, 33, 37, 47, 34prdsplusgfval 17521 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(+g𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤)))
7170oveq1d 7446 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)))
721, 26, 28, 30, 32, 37, 40, 50, 34prdsmulrfval 17523 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(.r𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
7352, 72oveq12d 7449 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7469, 71, 733eqtr4d 2785 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)))
7574mpteq2dva 5248 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
761, 26, 47, 27, 29, 61, 56, 36prdsplusgcl 18794 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(+g𝑌)𝑦) ∈ (Base‘𝑌))
771, 26, 27, 29, 31, 76, 39, 50prdsmulrval 17522 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
781, 26, 50, 27, 29, 24, 36, 39prdsmulrcl 20334 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(.r𝑌)𝑧) ∈ (Base‘𝑌))
791, 26, 27, 29, 31, 65, 78, 47prdsplusgval 17520 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
8075, 77, 793eqtr4d 2785 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))
8167, 80jca 511 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8281ralrimivvva 3203 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8326, 16, 47, 50isring 20255 . 2 (𝑌 ∈ Ring ↔ (𝑌 ∈ Grp ∧ (mulGrp‘𝑌) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))))
849, 23, 82, 83syl3anbrc 1342 1 (𝜑𝑌 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  cmpt 5231  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Xscprds 17492  Mndcmnd 18760  Grpcgrp 18964  mulGrpcmgp 20152  Ringcrg 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253
This theorem is referenced by:  prdscrngd  20336  pwsring  20338  xpsringd  20346
  Copyright terms: Public domain W3C validator