Step | Hyp | Ref
| Expression |
1 | | prdsringd.y |
. . 3
⊢ 𝑌 = (𝑆Xs𝑅) |
2 | | prdsringd.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | | prdsringd.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
4 | | prdsringd.r |
. . . 4
⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
5 | | ringgrp 19703 |
. . . . 5
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Grp) |
6 | 5 | ssriv 3921 |
. . . 4
⊢ Ring
⊆ Grp |
7 | | fss 6601 |
. . . 4
⊢ ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Grp) →
𝑅:𝐼⟶Grp) |
8 | 4, 6, 7 | sylancl 585 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
9 | 1, 2, 3, 8 | prdsgrpd 18600 |
. 2
⊢ (𝜑 → 𝑌 ∈ Grp) |
10 | | eqid 2738 |
. . . 4
⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) |
11 | | mgpf 19713 |
. . . . 5
⊢ (mulGrp
↾ Ring):Ring⟶Mnd |
12 | | fco2 6611 |
. . . . 5
⊢ (((mulGrp
↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd) |
13 | 11, 4, 12 | sylancr 586 |
. . . 4
⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd) |
14 | 10, 2, 3, 13 | prdsmndd 18333 |
. . 3
⊢ (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd) |
15 | | eqidd 2739 |
. . . 4
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) |
16 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) |
17 | 4 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝑅 Fn 𝐼) |
18 | 1, 16, 10, 2, 3, 17 | prdsmgp 19764 |
. . . . 5
⊢ (𝜑 →
((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧
(+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
19 | 18 | simpld 494 |
. . . 4
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
20 | 18 | simprd 495 |
. . . . 5
⊢ (𝜑 →
(+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
21 | 20 | oveqdr 7283 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
22 | 15, 19, 21 | mndpropd 18325 |
. . 3
⊢ (𝜑 → ((mulGrp‘𝑌) ∈ Mnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd)) |
23 | 14, 22 | mpbird 256 |
. 2
⊢ (𝜑 → (mulGrp‘𝑌) ∈ Mnd) |
24 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Ring) |
25 | 24 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (𝑅‘𝑤) ∈ Ring) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘𝑌) |
27 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑆 ∈ 𝑉) |
28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
29 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝐼 ∈ 𝑊) |
30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
31 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑅 Fn 𝐼) |
33 | | simplr1 1213 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑥 ∈ (Base‘𝑌)) |
34 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑤 ∈ 𝐼) |
35 | 1, 26, 28, 30, 32, 33, 34 | prdsbasprj 17100 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (𝑥‘𝑤) ∈ (Base‘(𝑅‘𝑤))) |
36 | | simpr2 1193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑦 ∈ (Base‘𝑌)) |
37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑦 ∈ (Base‘𝑌)) |
38 | 1, 26, 28, 30, 32, 37, 34 | prdsbasprj 17100 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (𝑦‘𝑤) ∈ (Base‘(𝑅‘𝑤))) |
39 | | simpr3 1194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑧 ∈ (Base‘𝑌)) |
40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → 𝑧 ∈ (Base‘𝑌)) |
41 | 1, 26, 28, 30, 32, 40, 34 | prdsbasprj 17100 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (𝑧‘𝑤) ∈ (Base‘(𝑅‘𝑤))) |
42 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝑅‘𝑤)) = (Base‘(𝑅‘𝑤)) |
43 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘(𝑅‘𝑤)) = (+g‘(𝑅‘𝑤)) |
44 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘(𝑅‘𝑤)) = (.r‘(𝑅‘𝑤)) |
45 | 42, 43, 44 | ringdi 19720 |
. . . . . . . 8
⊢ (((𝑅‘𝑤) ∈ Ring ∧ ((𝑥‘𝑤) ∈ (Base‘(𝑅‘𝑤)) ∧ (𝑦‘𝑤) ∈ (Base‘(𝑅‘𝑤)) ∧ (𝑧‘𝑤) ∈ (Base‘(𝑅‘𝑤)))) → ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦‘𝑤)(+g‘(𝑅‘𝑤))(𝑧‘𝑤))) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑦‘𝑤))(+g‘(𝑅‘𝑤))((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
46 | 25, 35, 38, 41, 45 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦‘𝑤)(+g‘(𝑅‘𝑤))(𝑧‘𝑤))) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑦‘𝑤))(+g‘(𝑅‘𝑤))((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑌) = (+g‘𝑌) |
48 | 1, 26, 28, 30, 32, 37, 40, 47, 34 | prdsplusgfval 17102 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑦(+g‘𝑌)𝑧)‘𝑤) = ((𝑦‘𝑤)(+g‘(𝑅‘𝑤))(𝑧‘𝑤))) |
49 | 48 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦(+g‘𝑌)𝑧)‘𝑤)) = ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦‘𝑤)(+g‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
50 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑌) = (.r‘𝑌) |
51 | 1, 26, 28, 30, 32, 33, 37, 50, 34 | prdsmulrfval 17104 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥(.r‘𝑌)𝑦)‘𝑤) = ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑦‘𝑤))) |
52 | 1, 26, 28, 30, 32, 33, 40, 50, 34 | prdsmulrfval 17104 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥(.r‘𝑌)𝑧)‘𝑤) = ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))) |
53 | 51, 52 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (((𝑥(.r‘𝑌)𝑦)‘𝑤)(+g‘(𝑅‘𝑤))((𝑥(.r‘𝑌)𝑧)‘𝑤)) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑦‘𝑤))(+g‘(𝑅‘𝑤))((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
54 | 46, 49, 53 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦(+g‘𝑌)𝑧)‘𝑤)) = (((𝑥(.r‘𝑌)𝑦)‘𝑤)(+g‘(𝑅‘𝑤))((𝑥(.r‘𝑌)𝑧)‘𝑤))) |
55 | 54 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤 ∈ 𝐼 ↦ ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦(+g‘𝑌)𝑧)‘𝑤))) = (𝑤 ∈ 𝐼 ↦ (((𝑥(.r‘𝑌)𝑦)‘𝑤)(+g‘(𝑅‘𝑤))((𝑥(.r‘𝑌)𝑧)‘𝑤)))) |
56 | | simpr1 1192 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑥 ∈ (Base‘𝑌)) |
57 | | ringmnd 19708 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Mnd) |
58 | 57 | ssriv 3921 |
. . . . . . . . 9
⊢ Ring
⊆ Mnd |
59 | | fss 6601 |
. . . . . . . . 9
⊢ ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Mnd) →
𝑅:𝐼⟶Mnd) |
60 | 4, 58, 59 | sylancl 585 |
. . . . . . . 8
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
61 | 60 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd) |
62 | 1, 26, 47, 27, 29, 61, 36, 39 | prdsplusgcl 18331 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(+g‘𝑌)𝑧) ∈ (Base‘𝑌)) |
63 | 1, 26, 27, 29, 31, 56, 62, 50 | prdsmulrval 17103 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r‘𝑌)(𝑦(+g‘𝑌)𝑧)) = (𝑤 ∈ 𝐼 ↦ ((𝑥‘𝑤)(.r‘(𝑅‘𝑤))((𝑦(+g‘𝑌)𝑧)‘𝑤)))) |
64 | 1, 26, 50, 27, 29, 24, 56, 36 | prdsmulrcl 19765 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r‘𝑌)𝑦) ∈ (Base‘𝑌)) |
65 | 1, 26, 50, 27, 29, 24, 56, 39 | prdsmulrcl 19765 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r‘𝑌)𝑧) ∈ (Base‘𝑌)) |
66 | 1, 26, 27, 29, 31, 64, 65, 47 | prdsplusgval 17101 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r‘𝑌)𝑦)(+g‘𝑌)(𝑥(.r‘𝑌)𝑧)) = (𝑤 ∈ 𝐼 ↦ (((𝑥(.r‘𝑌)𝑦)‘𝑤)(+g‘(𝑅‘𝑤))((𝑥(.r‘𝑌)𝑧)‘𝑤)))) |
67 | 55, 63, 66 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r‘𝑌)(𝑦(+g‘𝑌)𝑧)) = ((𝑥(.r‘𝑌)𝑦)(+g‘𝑌)(𝑥(.r‘𝑌)𝑧))) |
68 | 42, 43, 44 | ringdir 19721 |
. . . . . . . 8
⊢ (((𝑅‘𝑤) ∈ Ring ∧ ((𝑥‘𝑤) ∈ (Base‘(𝑅‘𝑤)) ∧ (𝑦‘𝑤) ∈ (Base‘(𝑅‘𝑤)) ∧ (𝑧‘𝑤) ∈ (Base‘(𝑅‘𝑤)))) → (((𝑥‘𝑤)(+g‘(𝑅‘𝑤))(𝑦‘𝑤))(.r‘(𝑅‘𝑤))(𝑧‘𝑤)) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))(+g‘(𝑅‘𝑤))((𝑦‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
69 | 25, 35, 38, 41, 68 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (((𝑥‘𝑤)(+g‘(𝑅‘𝑤))(𝑦‘𝑤))(.r‘(𝑅‘𝑤))(𝑧‘𝑤)) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))(+g‘(𝑅‘𝑤))((𝑦‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
70 | 1, 26, 28, 30, 32, 33, 37, 47, 34 | prdsplusgfval 17102 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑥(+g‘𝑌)𝑦)‘𝑤) = ((𝑥‘𝑤)(+g‘(𝑅‘𝑤))(𝑦‘𝑤))) |
71 | 70 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (((𝑥(+g‘𝑌)𝑦)‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)) = (((𝑥‘𝑤)(+g‘(𝑅‘𝑤))(𝑦‘𝑤))(.r‘(𝑅‘𝑤))(𝑧‘𝑤))) |
72 | 1, 26, 28, 30, 32, 37, 40, 50, 34 | prdsmulrfval 17104 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → ((𝑦(.r‘𝑌)𝑧)‘𝑤) = ((𝑦‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))) |
73 | 52, 72 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (((𝑥(.r‘𝑌)𝑧)‘𝑤)(+g‘(𝑅‘𝑤))((𝑦(.r‘𝑌)𝑧)‘𝑤)) = (((𝑥‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))(+g‘(𝑅‘𝑤))((𝑦‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
74 | 69, 71, 73 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤 ∈ 𝐼) → (((𝑥(+g‘𝑌)𝑦)‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)) = (((𝑥(.r‘𝑌)𝑧)‘𝑤)(+g‘(𝑅‘𝑤))((𝑦(.r‘𝑌)𝑧)‘𝑤))) |
75 | 74 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤 ∈ 𝐼 ↦ (((𝑥(+g‘𝑌)𝑦)‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤))) = (𝑤 ∈ 𝐼 ↦ (((𝑥(.r‘𝑌)𝑧)‘𝑤)(+g‘(𝑅‘𝑤))((𝑦(.r‘𝑌)𝑧)‘𝑤)))) |
76 | 1, 26, 47, 27, 29, 61, 56, 36 | prdsplusgcl 18331 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(+g‘𝑌)𝑦) ∈ (Base‘𝑌)) |
77 | 1, 26, 27, 29, 31, 76, 39, 50 | prdsmulrval 17103 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g‘𝑌)𝑦)(.r‘𝑌)𝑧) = (𝑤 ∈ 𝐼 ↦ (((𝑥(+g‘𝑌)𝑦)‘𝑤)(.r‘(𝑅‘𝑤))(𝑧‘𝑤)))) |
78 | 1, 26, 50, 27, 29, 24, 36, 39 | prdsmulrcl 19765 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(.r‘𝑌)𝑧) ∈ (Base‘𝑌)) |
79 | 1, 26, 27, 29, 31, 65, 78, 47 | prdsplusgval 17101 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r‘𝑌)𝑧)(+g‘𝑌)(𝑦(.r‘𝑌)𝑧)) = (𝑤 ∈ 𝐼 ↦ (((𝑥(.r‘𝑌)𝑧)‘𝑤)(+g‘(𝑅‘𝑤))((𝑦(.r‘𝑌)𝑧)‘𝑤)))) |
80 | 75, 77, 79 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g‘𝑌)𝑦)(.r‘𝑌)𝑧) = ((𝑥(.r‘𝑌)𝑧)(+g‘𝑌)(𝑦(.r‘𝑌)𝑧))) |
81 | 67, 80 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r‘𝑌)(𝑦(+g‘𝑌)𝑧)) = ((𝑥(.r‘𝑌)𝑦)(+g‘𝑌)(𝑥(.r‘𝑌)𝑧)) ∧ ((𝑥(+g‘𝑌)𝑦)(.r‘𝑌)𝑧) = ((𝑥(.r‘𝑌)𝑧)(+g‘𝑌)(𝑦(.r‘𝑌)𝑧)))) |
82 | 81 | ralrimivvva 3115 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r‘𝑌)(𝑦(+g‘𝑌)𝑧)) = ((𝑥(.r‘𝑌)𝑦)(+g‘𝑌)(𝑥(.r‘𝑌)𝑧)) ∧ ((𝑥(+g‘𝑌)𝑦)(.r‘𝑌)𝑧) = ((𝑥(.r‘𝑌)𝑧)(+g‘𝑌)(𝑦(.r‘𝑌)𝑧)))) |
83 | 26, 16, 47, 50 | isring 19702 |
. 2
⊢ (𝑌 ∈ Ring ↔ (𝑌 ∈ Grp ∧
(mulGrp‘𝑌) ∈ Mnd
∧ ∀𝑥 ∈
(Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r‘𝑌)(𝑦(+g‘𝑌)𝑧)) = ((𝑥(.r‘𝑌)𝑦)(+g‘𝑌)(𝑥(.r‘𝑌)𝑧)) ∧ ((𝑥(+g‘𝑌)𝑦)(.r‘𝑌)𝑧) = ((𝑥(.r‘𝑌)𝑧)(+g‘𝑌)(𝑦(.r‘𝑌)𝑧))))) |
84 | 9, 23, 82, 83 | syl3anbrc 1341 |
1
⊢ (𝜑 → 𝑌 ∈ Ring) |