MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsringd Structured version   Visualization version   GIF version

Theorem prdsringd 20230
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsringd.y 𝑌 = (𝑆Xs𝑅)
prdsringd.i (𝜑𝐼𝑊)
prdsringd.s (𝜑𝑆𝑉)
prdsringd.r (𝜑𝑅:𝐼⟶Ring)
Assertion
Ref Expression
prdsringd (𝜑𝑌 ∈ Ring)

Proof of Theorem prdsringd
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsringd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsringd.i . . 3 (𝜑𝐼𝑊)
3 prdsringd.s . . 3 (𝜑𝑆𝑉)
4 prdsringd.r . . . 4 (𝜑𝑅:𝐼⟶Ring)
5 ringgrp 20147 . . . . 5 (𝑥 ∈ Ring → 𝑥 ∈ Grp)
65ssriv 3950 . . . 4 Ring ⊆ Grp
7 fss 6704 . . . 4 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 18982 . 2 (𝜑𝑌 ∈ Grp)
10 eqid 2729 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 mgpf 20157 . . . . 5 (mulGrp ↾ Ring):Ring⟶Mnd
12 fco2 6714 . . . . 5 (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1311, 4, 12sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1410, 2, 3, 13prdsmndd 18697 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd)
15 eqidd 2730 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
16 eqid 2729 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
174ffnd 6689 . . . . . 6 (𝜑𝑅 Fn 𝐼)
181, 16, 10, 2, 3, 17prdsmgp 20060 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
1918simpld 494 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
2018simprd 495 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
2120oveqdr 7415 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
2215, 19, 21mndpropd 18686 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ Mnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd))
2314, 22mpbird 257 . 2 (𝜑 → (mulGrp‘𝑌) ∈ Mnd)
244adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Ring)
2524ffvelcdmda 7056 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑅𝑤) ∈ Ring)
26 eqid 2729 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
273adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑆𝑉)
2827adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑆𝑉)
292adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝐼𝑊)
3029adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝐼𝑊)
3117adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑅 Fn 𝐼)
33 simplr1 1216 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑥 ∈ (Base‘𝑌))
34 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑤𝐼)
351, 26, 28, 30, 32, 33, 34prdsbasprj 17435 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑥𝑤) ∈ (Base‘(𝑅𝑤)))
36 simpr2 1196 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑦 ∈ (Base‘𝑌))
3736adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑦 ∈ (Base‘𝑌))
381, 26, 28, 30, 32, 37, 34prdsbasprj 17435 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑦𝑤) ∈ (Base‘(𝑅𝑤)))
39 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑧 ∈ (Base‘𝑌))
4039adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑧 ∈ (Base‘𝑌))
411, 26, 28, 30, 32, 40, 34prdsbasprj 17435 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))
42 eqid 2729 . . . . . . . . 9 (Base‘(𝑅𝑤)) = (Base‘(𝑅𝑤))
43 eqid 2729 . . . . . . . . 9 (+g‘(𝑅𝑤)) = (+g‘(𝑅𝑤))
44 eqid 2729 . . . . . . . . 9 (.r‘(𝑅𝑤)) = (.r‘(𝑅𝑤))
4542, 43, 44ringdi 20170 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
4625, 35, 38, 41, 45syl13anc 1374 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
47 eqid 2729 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
481, 26, 28, 30, 32, 37, 40, 47, 34prdsplusgfval 17437 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(+g𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤)))
4948oveq2d 7403 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))))
50 eqid 2729 . . . . . . . . 9 (.r𝑌) = (.r𝑌)
511, 26, 28, 30, 32, 33, 37, 50, 34prdsmulrfval 17439 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤)))
521, 26, 28, 30, 32, 33, 40, 50, 34prdsmulrfval 17439 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑧)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
5351, 52oveq12d 7405 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
5446, 49, 533eqtr4d 2774 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)))
5554mpteq2dva 5200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
56 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑥 ∈ (Base‘𝑌))
57 ringmnd 20152 . . . . . . . . . 10 (𝑥 ∈ Ring → 𝑥 ∈ Mnd)
5857ssriv 3950 . . . . . . . . 9 Ring ⊆ Mnd
59 fss 6704 . . . . . . . . 9 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
604, 58, 59sylancl 586 . . . . . . . 8 (𝜑𝑅:𝐼⟶Mnd)
6160adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
621, 26, 47, 27, 29, 61, 36, 39prdsplusgcl 18695 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(+g𝑌)𝑧) ∈ (Base‘𝑌))
631, 26, 27, 29, 31, 56, 62, 50prdsmulrval 17438 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))))
641, 26, 50, 27, 29, 24, 56, 36prdsmulrcl 20229 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑦) ∈ (Base‘𝑌))
651, 26, 50, 27, 29, 24, 56, 39prdsmulrcl 20229 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑧) ∈ (Base‘𝑌))
661, 26, 27, 29, 31, 64, 65, 47prdsplusgval 17436 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
6755, 63, 663eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)))
6842, 43, 44ringdir 20171 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
6925, 35, 38, 41, 68syl13anc 1374 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
701, 26, 28, 30, 32, 33, 37, 47, 34prdsplusgfval 17437 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(+g𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤)))
7170oveq1d 7402 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)))
721, 26, 28, 30, 32, 37, 40, 50, 34prdsmulrfval 17439 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(.r𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
7352, 72oveq12d 7405 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7469, 71, 733eqtr4d 2774 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)))
7574mpteq2dva 5200 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
761, 26, 47, 27, 29, 61, 56, 36prdsplusgcl 18695 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(+g𝑌)𝑦) ∈ (Base‘𝑌))
771, 26, 27, 29, 31, 76, 39, 50prdsmulrval 17438 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
781, 26, 50, 27, 29, 24, 36, 39prdsmulrcl 20229 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(.r𝑌)𝑧) ∈ (Base‘𝑌))
791, 26, 27, 29, 31, 65, 78, 47prdsplusgval 17436 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
8075, 77, 793eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))
8167, 80jca 511 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8281ralrimivvva 3183 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8326, 16, 47, 50isring 20146 . 2 (𝑌 ∈ Ring ↔ (𝑌 ∈ Grp ∧ (mulGrp‘𝑌) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))))
849, 23, 82, 83syl3anbrc 1344 1 (𝜑𝑌 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  cmpt 5188  cres 5640  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Xscprds 17408  Mndcmnd 18661  Grpcgrp 18865  mulGrpcmgp 20049  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144
This theorem is referenced by:  prdscrngd  20231  pwsring  20233  xpsringd  20241
  Copyright terms: Public domain W3C validator