Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrprm Structured version   Visualization version   GIF version

Theorem isrprm 33482
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
isrprm.1 𝐵 = (Base‘𝑅)
isrprm.2 𝑈 = (Unit‘𝑅)
isrprm.3 0 = (0g𝑅)
isrprm.4 = (∥r𝑅)
isrprm.5 · = (.r𝑅)
Assertion
Ref Expression
isrprm (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isrprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrprm.1 . . . 4 𝐵 = (Base‘𝑅)
2 isrprm.2 . . . 4 𝑈 = (Unit‘𝑅)
3 isrprm.3 . . . 4 0 = (0g𝑅)
4 isrprm.5 . . . 4 · = (.r𝑅)
5 isrprm.4 . . . 4 = (∥r𝑅)
61, 2, 3, 4, 5rprmval 33481 . . 3 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
76eleq2d 2817 . 2 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))}))
8 breq1 5092 . . . . 5 (𝑝 = 𝑃 → (𝑝 (𝑥 · 𝑦) ↔ 𝑃 (𝑥 · 𝑦)))
9 breq1 5092 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
10 breq1 5092 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑦𝑃 𝑦))
119, 10orbi12d 918 . . . . 5 (𝑝 = 𝑃 → ((𝑝 𝑥𝑝 𝑦) ↔ (𝑃 𝑥𝑃 𝑦)))
128, 11imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
13122ralbidv 3196 . . 3 (𝑝 = 𝑃 → (∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
1413elrab 3642 . 2 (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
157, 14bitrdi 287 1 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3894  cun 3895  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  rcdsr 20272  Unitcui 20273  RPrimecrpm 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-rprm 20351
This theorem is referenced by:  rprmcl  33483  rprmdvds  33484  rprmnz  33485  rprmnunit  33486  rsprprmprmidlb  33488  rprmirredb  33497
  Copyright terms: Public domain W3C validator