![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrprm | Structured version Visualization version GIF version |
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
Ref | Expression |
---|---|
isrprm.1 | ⊢ 𝐵 = (Base‘𝑅) |
isrprm.2 | ⊢ 𝑈 = (Unit‘𝑅) |
isrprm.3 | ⊢ 0 = (0g‘𝑅) |
isrprm.4 | ⊢ ∥ = (∥r‘𝑅) |
isrprm.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isrprm | ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrprm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrprm.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isrprm.3 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | isrprm.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
5 | isrprm.4 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | rprmval 33395 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) |
7 | 6 | eleq2d 2812 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))})) |
8 | breq1 5147 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ (𝑥 · 𝑦))) | |
9 | breq1 5147 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥)) | |
10 | breq1 5147 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦)) | |
11 | 9, 10 | orbi12d 916 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
12 | 8, 11 | imbi12d 343 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
13 | 12 | 2ralbidv 3209 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
14 | 13 | elrab 3681 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
15 | 7, 14 | bitrdi 286 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3420 ∖ cdif 3944 ∪ cun 3945 {csn 4624 class class class wbr 5144 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 .rcmulr 17260 0gc0g 17447 ∥rcdsr 20330 Unitcui 20331 RPrimecrpm 20408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7417 df-rprm 20409 |
This theorem is referenced by: rprmcl 33397 rprmdvds 33398 rprmnz 33399 rprmnunit 33400 rsprprmprmidlb 33402 rprmirredb 33411 |
Copyright terms: Public domain | W3C validator |