Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrprm Structured version   Visualization version   GIF version

Theorem isrprm 31665
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
isrprm.1 𝐵 = (Base‘𝑅)
isrprm.2 𝑈 = (Unit‘𝑅)
isrprm.3 0 = (0g𝑅)
isrprm.4 = (∥r𝑅)
isrprm.5 · = (.r𝑅)
Assertion
Ref Expression
isrprm (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isrprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrprm.1 . . . 4 𝐵 = (Base‘𝑅)
2 isrprm.2 . . . 4 𝑈 = (Unit‘𝑅)
3 isrprm.3 . . . 4 0 = (0g𝑅)
4 isrprm.5 . . . 4 · = (.r𝑅)
5 isrprm.4 . . . 4 = (∥r𝑅)
61, 2, 3, 4, 5rprmval 31664 . . 3 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
76eleq2d 2824 . 2 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))}))
8 breq1 5077 . . . . 5 (𝑝 = 𝑃 → (𝑝 (𝑥 · 𝑦) ↔ 𝑃 (𝑥 · 𝑦)))
9 breq1 5077 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
10 breq1 5077 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑦𝑃 𝑦))
119, 10orbi12d 916 . . . . 5 (𝑝 = 𝑃 → ((𝑝 𝑥𝑝 𝑦) ↔ (𝑃 𝑥𝑃 𝑦)))
128, 11imbi12d 345 . . . 4 (𝑝 = 𝑃 → ((𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
13122ralbidv 3129 . . 3 (𝑝 = 𝑃 → (∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
1413elrab 3624 . 2 (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
157, 14bitrdi 287 1 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cun 3885  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  0gc0g 17150  rcdsr 19880  Unitcui 19881  RPrimecrpm 19954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-rprm 19955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator