![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrprm | Structured version Visualization version GIF version |
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
Ref | Expression |
---|---|
isrprm.1 | ⊢ 𝐵 = (Base‘𝑅) |
isrprm.2 | ⊢ 𝑈 = (Unit‘𝑅) |
isrprm.3 | ⊢ 0 = (0g‘𝑅) |
isrprm.4 | ⊢ ∥ = (∥r‘𝑅) |
isrprm.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isrprm | ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrprm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrprm.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isrprm.3 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | isrprm.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
5 | isrprm.4 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | rprmval 33524 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) |
7 | 6 | eleq2d 2825 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))})) |
8 | breq1 5151 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ (𝑥 · 𝑦))) | |
9 | breq1 5151 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥)) | |
10 | breq1 5151 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦)) | |
11 | 9, 10 | orbi12d 918 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
12 | 8, 11 | imbi12d 344 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
13 | 12 | 2ralbidv 3219 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
14 | 13 | elrab 3695 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
15 | 7, 14 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∪ cun 3961 {csn 4631 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 0gc0g 17486 ∥rcdsr 20371 Unitcui 20372 RPrimecrpm 20449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-rprm 20450 |
This theorem is referenced by: rprmcl 33526 rprmdvds 33527 rprmnz 33528 rprmnunit 33529 rsprprmprmidlb 33531 rprmirredb 33540 |
Copyright terms: Public domain | W3C validator |