| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrprm | Structured version Visualization version GIF version | ||
| Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| Ref | Expression |
|---|---|
| isrprm.1 | ⊢ 𝐵 = (Base‘𝑅) |
| isrprm.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| isrprm.3 | ⊢ 0 = (0g‘𝑅) |
| isrprm.4 | ⊢ ∥ = (∥r‘𝑅) |
| isrprm.5 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isrprm | ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrprm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isrprm.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isrprm.3 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | isrprm.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 5 | isrprm.4 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | rprmval 33481 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) |
| 7 | 6 | eleq2d 2817 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))})) |
| 8 | breq1 5092 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ (𝑥 · 𝑦))) | |
| 9 | breq1 5092 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥)) | |
| 10 | breq1 5092 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦)) | |
| 11 | 9, 10 | orbi12d 918 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
| 12 | 8, 11 | imbi12d 344 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 13 | 12 | 2ralbidv 3196 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 14 | 13 | elrab 3642 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 15 | 7, 14 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ∪ cun 3895 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 ∥rcdsr 20272 Unitcui 20273 RPrimecrpm 20350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-rprm 20351 |
| This theorem is referenced by: rprmcl 33483 rprmdvds 33484 rprmnz 33485 rprmnunit 33486 rsprprmprmidlb 33488 rprmirredb 33497 |
| Copyright terms: Public domain | W3C validator |