Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrprm Structured version   Visualization version   GIF version

Theorem isrprm 31171
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
isrprm.1 𝐵 = (Base‘𝑅)
isrprm.2 𝑈 = (Unit‘𝑅)
isrprm.3 0 = (0g𝑅)
isrprm.4 = (∥r𝑅)
isrprm.5 · = (.r𝑅)
Assertion
Ref Expression
isrprm (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isrprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrprm.1 . . . 4 𝐵 = (Base‘𝑅)
2 isrprm.2 . . . 4 𝑈 = (Unit‘𝑅)
3 isrprm.3 . . . 4 0 = (0g𝑅)
4 isrprm.5 . . . 4 · = (.r𝑅)
5 isrprm.4 . . . 4 = (∥r𝑅)
61, 2, 3, 4, 5rprmval 31170 . . 3 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
76eleq2d 2836 . 2 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))}))
8 breq1 5028 . . . . 5 (𝑝 = 𝑃 → (𝑝 (𝑥 · 𝑦) ↔ 𝑃 (𝑥 · 𝑦)))
9 breq1 5028 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
10 breq1 5028 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑦𝑃 𝑦))
119, 10orbi12d 917 . . . . 5 (𝑝 = 𝑃 → ((𝑝 𝑥𝑝 𝑦) ↔ (𝑃 𝑥𝑃 𝑦)))
128, 11imbi12d 349 . . . 4 (𝑝 = 𝑃 → ((𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
13122ralbidv 3126 . . 3 (𝑝 = 𝑃 → (∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
1413elrab 3600 . 2 (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
157, 14syl6bb 291 1 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wo 845   = wceq 1539  wcel 2112  wral 3068  {crab 3072  cdif 3851  cun 3852  {csn 4515   class class class wbr 5025  cfv 6328  (class class class)co 7143  Basecbs 16526  .rcmulr 16609  0gc0g 16756  rcdsr 19444  Unitcui 19445  RPrimecrpm 19518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pr 5291
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7146  df-rprm 19519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator