Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrprm Structured version   Visualization version   GIF version

Theorem isrprm 33525
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
isrprm.1 𝐵 = (Base‘𝑅)
isrprm.2 𝑈 = (Unit‘𝑅)
isrprm.3 0 = (0g𝑅)
isrprm.4 = (∥r𝑅)
isrprm.5 · = (.r𝑅)
Assertion
Ref Expression
isrprm (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isrprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrprm.1 . . . 4 𝐵 = (Base‘𝑅)
2 isrprm.2 . . . 4 𝑈 = (Unit‘𝑅)
3 isrprm.3 . . . 4 0 = (0g𝑅)
4 isrprm.5 . . . 4 · = (.r𝑅)
5 isrprm.4 . . . 4 = (∥r𝑅)
61, 2, 3, 4, 5rprmval 33524 . . 3 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
76eleq2d 2825 . 2 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))}))
8 breq1 5151 . . . . 5 (𝑝 = 𝑃 → (𝑝 (𝑥 · 𝑦) ↔ 𝑃 (𝑥 · 𝑦)))
9 breq1 5151 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
10 breq1 5151 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑦𝑃 𝑦))
119, 10orbi12d 918 . . . . 5 (𝑝 = 𝑃 → ((𝑝 𝑥𝑝 𝑦) ↔ (𝑃 𝑥𝑃 𝑦)))
128, 11imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
13122ralbidv 3219 . . 3 (𝑝 = 𝑃 → (∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
1413elrab 3695 . 2 (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
157, 14bitrdi 287 1 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cdif 3960  cun 3961  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  0gc0g 17486  rcdsr 20371  Unitcui 20372  RPrimecrpm 20449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-rprm 20450
This theorem is referenced by:  rprmcl  33526  rprmdvds  33527  rprmnz  33528  rprmnunit  33529  rsprprmprmidlb  33531  rprmirredb  33540
  Copyright terms: Public domain W3C validator