![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrprm | Structured version Visualization version GIF version |
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
Ref | Expression |
---|---|
isrprm.1 | ⊢ 𝐵 = (Base‘𝑅) |
isrprm.2 | ⊢ 𝑈 = (Unit‘𝑅) |
isrprm.3 | ⊢ 0 = (0g‘𝑅) |
isrprm.4 | ⊢ ∥ = (∥r‘𝑅) |
isrprm.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isrprm | ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrprm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrprm.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | isrprm.3 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | isrprm.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
5 | isrprm.4 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | rprmval 33509 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) |
7 | 6 | eleq2d 2830 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))})) |
8 | breq1 5169 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ (𝑥 · 𝑦))) | |
9 | breq1 5169 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥)) | |
10 | breq1 5169 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦)) | |
11 | 9, 10 | orbi12d 917 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
12 | 8, 11 | imbi12d 344 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
13 | 12 | 2ralbidv 3227 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
14 | 13 | elrab 3708 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
15 | 7, 14 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∪ cun 3974 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 ∥rcdsr 20380 Unitcui 20381 RPrimecrpm 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rprm 20459 |
This theorem is referenced by: rprmcl 33511 rprmdvds 33512 rprmnz 33513 rprmnunit 33514 rsprprmprmidlb 33516 rprmirredb 33525 |
Copyright terms: Public domain | W3C validator |