| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrprm | Structured version Visualization version GIF version | ||
| Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| Ref | Expression |
|---|---|
| isrprm.1 | ⊢ 𝐵 = (Base‘𝑅) |
| isrprm.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| isrprm.3 | ⊢ 0 = (0g‘𝑅) |
| isrprm.4 | ⊢ ∥ = (∥r‘𝑅) |
| isrprm.5 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isrprm | ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrprm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isrprm.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | isrprm.3 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | isrprm.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 5 | isrprm.4 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | rprmval 33485 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) |
| 7 | 6 | eleq2d 2819 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))})) |
| 8 | breq1 5128 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ (𝑥 · 𝑦))) | |
| 9 | breq1 5128 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥)) | |
| 10 | breq1 5128 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦)) | |
| 11 | 9, 10 | orbi12d 918 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
| 12 | 8, 11 | imbi12d 344 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 13 | 12 | 2ralbidv 3208 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 14 | 13 | elrab 3676 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
| 15 | 7, 14 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3420 ∖ cdif 3930 ∪ cun 3931 {csn 4608 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 .rcmulr 17278 0gc0g 17460 ∥rcdsr 20327 Unitcui 20328 RPrimecrpm 20405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-rprm 20406 |
| This theorem is referenced by: rprmcl 33487 rprmdvds 33488 rprmnz 33489 rprmnunit 33490 rsprprmprmidlb 33492 rprmirredb 33501 |
| Copyright terms: Public domain | W3C validator |