Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrprm Structured version   Visualization version   GIF version

Theorem isrprm 33486
Description: Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
isrprm.1 𝐵 = (Base‘𝑅)
isrprm.2 𝑈 = (Unit‘𝑅)
isrprm.3 0 = (0g𝑅)
isrprm.4 = (∥r𝑅)
isrprm.5 · = (.r𝑅)
Assertion
Ref Expression
isrprm (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isrprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrprm.1 . . . 4 𝐵 = (Base‘𝑅)
2 isrprm.2 . . . 4 𝑈 = (Unit‘𝑅)
3 isrprm.3 . . . 4 0 = (0g𝑅)
4 isrprm.5 . . . 4 · = (.r𝑅)
5 isrprm.4 . . . 4 = (∥r𝑅)
61, 2, 3, 4, 5rprmval 33485 . . 3 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
76eleq2d 2819 . 2 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ 𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))}))
8 breq1 5128 . . . . 5 (𝑝 = 𝑃 → (𝑝 (𝑥 · 𝑦) ↔ 𝑃 (𝑥 · 𝑦)))
9 breq1 5128 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
10 breq1 5128 . . . . . 6 (𝑝 = 𝑃 → (𝑝 𝑦𝑃 𝑦))
119, 10orbi12d 918 . . . . 5 (𝑝 = 𝑃 → ((𝑝 𝑥𝑝 𝑦) ↔ (𝑃 𝑥𝑃 𝑦)))
128, 11imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
13122ralbidv 3208 . . 3 (𝑝 = 𝑃 → (∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
1413elrab 3676 . 2 (𝑃 ∈ {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦))))
157, 14bitrdi 287 1 (𝑅𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥𝐵𝑦𝐵 (𝑃 (𝑥 · 𝑦) → (𝑃 𝑥𝑃 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  {crab 3420  cdif 3930  cun 3931  {csn 4608   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  .rcmulr 17278  0gc0g 17460  rcdsr 20327  Unitcui 20328  RPrimecrpm 20405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-rprm 20406
This theorem is referenced by:  rprmcl  33487  rprmdvds  33488  rprmnz  33489  rprmnunit  33490  rsprprmprmidlb  33492  rprmirredb  33501
  Copyright terms: Public domain W3C validator