Step | Hyp | Ref
| Expression |
1 | | tospos 18053 |
. . 3
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
2 | | resspos 31146 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |
3 | 1, 2 | sylan 579 |
. 2
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |
4 | | eqid 2738 |
. . . . . . 7
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) |
6 | 4, 5 | ressbas 16873 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹 ↾s 𝐴))) |
7 | | inss2 4160 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹) |
8 | 6, 7 | eqsstrrdi 3972 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
9 | 8 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐹) =
(le‘𝐹) |
11 | 5, 10 | istos 18051 |
. . . . . 6
⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
12 | 11 | simprbi 496 |
. . . . 5
⊢ (𝐹 ∈ Toset →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
14 | | ssralv 3983 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
15 | | ssralv 3983 |
. . . . . 6
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
16 | 15 | ralimdv 3103 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
17 | 14, 16 | syld 47 |
. . . 4
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
18 | 9, 13, 17 | sylc 65 |
. . 3
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
19 | 4, 10 | ressle 17013 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
20 | 19 | breqd 5081 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥(le‘𝐹)𝑦 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑦)) |
21 | 19 | breqd 5081 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑦(le‘𝐹)𝑥 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
22 | 20, 21 | orbi12d 915 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
23 | 22 | 2ralbidv 3122 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
24 | 23 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
25 | 18, 24 | mpbid 231 |
. 2
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
26 | | eqid 2738 |
. . 3
⊢
(Base‘(𝐹
↾s 𝐴)) =
(Base‘(𝐹
↾s 𝐴)) |
27 | | eqid 2738 |
. . 3
⊢
(le‘(𝐹
↾s 𝐴)) =
(le‘(𝐹
↾s 𝐴)) |
28 | 26, 27 | istos 18051 |
. 2
⊢ ((𝐹 ↾s 𝐴) ∈ Toset ↔ ((𝐹 ↾s 𝐴) ∈ Poset ∧
∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
29 | 3, 25, 28 | sylanbrc 582 |
1
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) |