| Step | Hyp | Ref
| Expression |
| 1 | | tospos 18435 |
. . 3
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| 2 | | resspos 32951 |
. . 3
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |
| 3 | 1, 2 | sylan 580 |
. 2
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) |
| 4 | | eqid 2736 |
. . . . . . 7
⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 6 | 4, 5 | ressbas 17262 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹 ↾s 𝐴))) |
| 7 | | inss2 4218 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹) |
| 8 | 6, 7 | eqsstrrdi 4009 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (Base‘(𝐹 ↾s 𝐴)) ⊆ (Base‘𝐹)) |
| 10 | | eqid 2736 |
. . . . . . 7
⊢
(le‘𝐹) =
(le‘𝐹) |
| 11 | 5, 10 | istos 18433 |
. . . . . 6
⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 12 | 11 | simprbi 496 |
. . . . 5
⊢ (𝐹 ∈ Toset →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
| 14 | | ssralv 4032 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 15 | | ssralv 4032 |
. . . . . 6
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑦 ∈
(Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 16 | 15 | ralimdv 3155 |
. . . . 5
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 17 | 14, 16 | syld 47 |
. . . 4
⊢
((Base‘(𝐹
↾s 𝐴))
⊆ (Base‘𝐹)
→ (∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 18 | 9, 13, 17 | sylc 65 |
. . 3
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥)) |
| 19 | 4, 10 | ressle 17399 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (le‘𝐹) = (le‘(𝐹 ↾s 𝐴))) |
| 20 | 19 | breqd 5135 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥(le‘𝐹)𝑦 ↔ 𝑥(le‘(𝐹 ↾s 𝐴))𝑦)) |
| 21 | 19 | breqd 5135 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑦(le‘𝐹)𝑥 ↔ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
| 22 | 20, 21 | orbi12d 918 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
| 23 | 22 | 2ralbidv 3209 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
| 24 | 23 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
| 25 | 18, 24 | mpbid 232 |
. 2
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ (Base‘(𝐹 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥)) |
| 26 | | eqid 2736 |
. . 3
⊢
(Base‘(𝐹
↾s 𝐴)) =
(Base‘(𝐹
↾s 𝐴)) |
| 27 | | eqid 2736 |
. . 3
⊢
(le‘(𝐹
↾s 𝐴)) =
(le‘(𝐹
↾s 𝐴)) |
| 28 | 26, 27 | istos 18433 |
. 2
⊢ ((𝐹 ↾s 𝐴) ∈ Toset ↔ ((𝐹 ↾s 𝐴) ∈ Poset ∧
∀𝑥 ∈
(Base‘(𝐹
↾s 𝐴))∀𝑦 ∈ (Base‘(𝐹 ↾s 𝐴))(𝑥(le‘(𝐹 ↾s 𝐴))𝑦 ∨ 𝑦(le‘(𝐹 ↾s 𝐴))𝑥))) |
| 29 | 3, 25, 28 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) |