Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resstos Structured version   Visualization version   GIF version

Theorem resstos 30642
Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resstos ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)

Proof of Theorem resstos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 30640 . . 3 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
2 resspos 30641 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
31, 2sylan 582 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
4 eqid 2821 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
5 eqid 2821 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
64, 5ressbas 16548 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
7 inss2 4205 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
86, 7eqsstrrdi 4021 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
98adantl 484 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
10 eqid 2821 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
115, 10istos 17639 . . . . . 6 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1211simprbi 499 . . . . 5 (𝐹 ∈ Toset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
1312adantr 483 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
14 ssralv 4032 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
15 ssralv 4032 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1615ralimdv 3178 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1714, 16syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
189, 13, 17sylc 65 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
194, 10ressle 16666 . . . . . . 7 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2019breqd 5069 . . . . . 6 (𝐴𝑉 → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
2119breqd 5069 . . . . . 6 (𝐴𝑉 → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2220, 21orbi12d 915 . . . . 5 (𝐴𝑉 → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
23222ralbidv 3199 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2423adantl 484 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2518, 24mpbid 234 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥))
26 eqid 2821 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
27 eqid 2821 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
2826, 27istos 17639 . 2 ((𝐹s 𝐴) ∈ Toset ↔ ((𝐹s 𝐴) ∈ Poset ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
293, 25, 28sylanbrc 585 1 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wcel 2110  wral 3138  cin 3934  wss 3935   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  lecple 16566  Posetcpo 17544  Tosetctos 17637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-ple 16579  df-poset 17550  df-toset 17638
This theorem is referenced by:  submomnd  30706  submarchi  30810
  Copyright terms: Public domain W3C validator