Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resstos Structured version   Visualization version   GIF version

Theorem resstos 31653
Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resstos ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)

Proof of Theorem resstos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 18269 . . 3 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
2 resspos 31652 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
31, 2sylan 580 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
4 eqid 2737 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
5 eqid 2737 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
64, 5ressbas 17078 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
7 inss2 4187 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
86, 7eqsstrrdi 3997 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
98adantl 482 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
10 eqid 2737 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
115, 10istos 18267 . . . . . 6 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1211simprbi 497 . . . . 5 (𝐹 ∈ Toset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
1312adantr 481 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
14 ssralv 4008 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
15 ssralv 4008 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1615ralimdv 3164 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1714, 16syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
189, 13, 17sylc 65 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
194, 10ressle 17221 . . . . . . 7 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2019breqd 5114 . . . . . 6 (𝐴𝑉 → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
2119breqd 5114 . . . . . 6 (𝐴𝑉 → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2220, 21orbi12d 917 . . . . 5 (𝐴𝑉 → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
23222ralbidv 3210 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2423adantl 482 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2518, 24mpbid 231 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥))
26 eqid 2737 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
27 eqid 2737 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
2826, 27istos 18267 . 2 ((𝐹s 𝐴) ∈ Toset ↔ ((𝐹s 𝐴) ∈ Poset ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
293, 25, 28sylanbrc 583 1 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  wcel 2106  wral 3062  cin 3907  wss 3908   class class class wbr 5103  cfv 6493  (class class class)co 7351  Basecbs 17043  s cress 17072  lecple 17100  Posetcpo 18156  Tosetctos 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-dec 12577  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-ple 17113  df-poset 18162  df-toset 18266
This theorem is referenced by:  submomnd  31744  submarchi  31848
  Copyright terms: Public domain W3C validator