MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg3ld Structured version   Visualization version   GIF version

Theorem istrkg3ld 28439
Description: Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg3ld (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐼   𝑢,𝑃,𝑣,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem istrkg3ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3z 12505 . . . 4 3 ∈ ℤ
2 2re 12199 . . . . 5 2 ∈ ℝ
3 3re 12205 . . . . 5 3 ∈ ℝ
4 2lt3 12292 . . . . 5 2 < 3
52, 3, 4ltleii 11236 . . . 4 2 ≤ 3
6 2z 12504 . . . . 5 2 ∈ ℤ
76eluz1i 12740 . . . 4 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
81, 5, 7mpbir2an 711 . . 3 3 ∈ (ℤ‘2)
9 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
10 istrkg.d . . . 4 = (dist‘𝐺)
11 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
129, 10, 11istrkgld 28437 . . 3 ((𝐺𝑉 ∧ 3 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
138, 12mpan2 691 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
14 fzo13pr 13649 . . . . . 6 (1..^3) = {1, 2}
15 f1eq2 6715 . . . . . 6 ((1..^3) = {1, 2} → (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃))
1614, 15ax-mp 5 . . . . 5 (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃)
1716anbi1i 624 . . . 4 ((𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1817exbii 1849 . . 3 (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1918a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
20 1z 12502 . . . 4 1 ∈ ℤ
21 1ne2 12328 . . . 4 1 ≠ 2
22 oveq1 7353 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑥) = ((𝑓‘1) 𝑥))
2322eqeq1d 2733 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = (𝑣 𝑥)))
24 oveq1 7353 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑦) = ((𝑓‘1) 𝑦))
2524eqeq1d 2733 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = (𝑣 𝑦)))
26 oveq1 7353 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑧) = ((𝑓‘1) 𝑧))
2726eqeq1d 2733 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = (𝑣 𝑧)))
2823, 25, 273anbi123d 1438 . . . . . . . 8 (𝑢 = (𝑓‘1) → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧))))
2928anbi1d 631 . . . . . . 7 (𝑢 = (𝑓‘1) → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3029rexbidv 3156 . . . . . 6 (𝑢 = (𝑓‘1) → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
31302rexbidv 3197 . . . . 5 (𝑢 = (𝑓‘1) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
32 oveq1 7353 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑥) = ((𝑓‘2) 𝑥))
3332eqeq2d 2742 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
34 oveq1 7353 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑦) = ((𝑓‘2) 𝑦))
3534eqeq2d 2742 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
36 oveq1 7353 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑧) = ((𝑓‘2) 𝑧))
3736eqeq2d 2742 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
3833, 35, 373anbi123d 1438 . . . . . . . . 9 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
39 2p1e3 12262 . . . . . . . . . . . . 13 (2 + 1) = 3
4039oveq2i 7357 . . . . . . . . . . . 12 (2..^(2 + 1)) = (2..^3)
41 fzosn 13636 . . . . . . . . . . . . 13 (2 ∈ ℤ → (2..^(2 + 1)) = {2})
426, 41ax-mp 5 . . . . . . . . . . . 12 (2..^(2 + 1)) = {2}
4340, 42eqtr3i 2756 . . . . . . . . . . 11 (2..^3) = {2}
4443raleqi 3290 . . . . . . . . . 10 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)))
45 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑗 = 2 → (𝑓𝑗) = (𝑓‘2))
4645oveq1d 7361 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑥) = ((𝑓‘2) 𝑥))
4746eqeq2d 2742 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
4845oveq1d 7361 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑦) = ((𝑓‘2) 𝑦))
4948eqeq2d 2742 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
5045oveq1d 7361 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑧) = ((𝑓‘2) 𝑧))
5150eqeq2d 2742 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5247, 49, 513anbi123d 1438 . . . . . . . . . . . 12 (𝑗 = 2 → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
5352ralsng 4625 . . . . . . . . . . 11 (2 ∈ ℤ → (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
546, 53ax-mp 5 . . . . . . . . . 10 (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5544, 54bitri 275 . . . . . . . . 9 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5638, 55bitr4di 289 . . . . . . . 8 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ ∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
5756anbi1d 631 . . . . . . 7 (𝑣 = (𝑓‘2) → (((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
5857rexbidv 3156 . . . . . 6 (𝑣 = (𝑓‘2) → (∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
59582rexbidv 3197 . . . . 5 (𝑣 = (𝑓‘2) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6031, 59f1prex 7218 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≠ 2) → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6120, 6, 21, 60mp3an 1463 . . 3 (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6261a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6313, 19, 623bitrd 305 1 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {csn 4573  {cpr 4575   class class class wbr 5089  1-1wf1 6478  cfv 6481  (class class class)co 7346  1c1 11007   + caddc 11009  cle 11147  2c2 12180  3c3 12181  cz 12468  cuz 12732  ..^cfzo 13554  Basecbs 17120  distcds 17170  DimTarskiGcstrkgld 28409  Itvcitv 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-trkgld 28430
This theorem is referenced by:  axtgupdim2  28449
  Copyright terms: Public domain W3C validator