MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg3ld Structured version   Visualization version   GIF version

Theorem istrkg3ld 28388
Description: Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg3ld (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐼   𝑢,𝑃,𝑣,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem istrkg3ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3z 12566 . . . 4 3 ∈ ℤ
2 2re 12260 . . . . 5 2 ∈ ℝ
3 3re 12266 . . . . 5 3 ∈ ℝ
4 2lt3 12353 . . . . 5 2 < 3
52, 3, 4ltleii 11297 . . . 4 2 ≤ 3
6 2z 12565 . . . . 5 2 ∈ ℤ
76eluz1i 12801 . . . 4 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
81, 5, 7mpbir2an 711 . . 3 3 ∈ (ℤ‘2)
9 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
10 istrkg.d . . . 4 = (dist‘𝐺)
11 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
129, 10, 11istrkgld 28386 . . 3 ((𝐺𝑉 ∧ 3 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
138, 12mpan2 691 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
14 fzo13pr 13710 . . . . . 6 (1..^3) = {1, 2}
15 f1eq2 6752 . . . . . 6 ((1..^3) = {1, 2} → (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃))
1614, 15ax-mp 5 . . . . 5 (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃)
1716anbi1i 624 . . . 4 ((𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1817exbii 1848 . . 3 (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1918a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
20 1z 12563 . . . 4 1 ∈ ℤ
21 1ne2 12389 . . . 4 1 ≠ 2
22 oveq1 7394 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑥) = ((𝑓‘1) 𝑥))
2322eqeq1d 2731 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = (𝑣 𝑥)))
24 oveq1 7394 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑦) = ((𝑓‘1) 𝑦))
2524eqeq1d 2731 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = (𝑣 𝑦)))
26 oveq1 7394 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → (𝑢 𝑧) = ((𝑓‘1) 𝑧))
2726eqeq1d 2731 . . . . . . . . 9 (𝑢 = (𝑓‘1) → ((𝑢 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = (𝑣 𝑧)))
2823, 25, 273anbi123d 1438 . . . . . . . 8 (𝑢 = (𝑓‘1) → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧))))
2928anbi1d 631 . . . . . . 7 (𝑢 = (𝑓‘1) → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3029rexbidv 3157 . . . . . 6 (𝑢 = (𝑓‘1) → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
31302rexbidv 3202 . . . . 5 (𝑢 = (𝑓‘1) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
32 oveq1 7394 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑥) = ((𝑓‘2) 𝑥))
3332eqeq2d 2740 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
34 oveq1 7394 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑦) = ((𝑓‘2) 𝑦))
3534eqeq2d 2740 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
36 oveq1 7394 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (𝑣 𝑧) = ((𝑓‘2) 𝑧))
3736eqeq2d 2740 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
3833, 35, 373anbi123d 1438 . . . . . . . . 9 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
39 2p1e3 12323 . . . . . . . . . . . . 13 (2 + 1) = 3
4039oveq2i 7398 . . . . . . . . . . . 12 (2..^(2 + 1)) = (2..^3)
41 fzosn 13697 . . . . . . . . . . . . 13 (2 ∈ ℤ → (2..^(2 + 1)) = {2})
426, 41ax-mp 5 . . . . . . . . . . . 12 (2..^(2 + 1)) = {2}
4340, 42eqtr3i 2754 . . . . . . . . . . 11 (2..^3) = {2}
4443raleqi 3297 . . . . . . . . . 10 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)))
45 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑗 = 2 → (𝑓𝑗) = (𝑓‘2))
4645oveq1d 7402 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑥) = ((𝑓‘2) 𝑥))
4746eqeq2d 2740 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
4845oveq1d 7402 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑦) = ((𝑓‘2) 𝑦))
4948eqeq2d 2740 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
5045oveq1d 7402 . . . . . . . . . . . . . 14 (𝑗 = 2 → ((𝑓𝑗) 𝑧) = ((𝑓‘2) 𝑧))
5150eqeq2d 2740 . . . . . . . . . . . . 13 (𝑗 = 2 → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5247, 49, 513anbi123d 1438 . . . . . . . . . . . 12 (𝑗 = 2 → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
5352ralsng 4639 . . . . . . . . . . 11 (2 ∈ ℤ → (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
546, 53ax-mp 5 . . . . . . . . . 10 (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5544, 54bitri 275 . . . . . . . . 9 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5638, 55bitr4di 289 . . . . . . . 8 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ ∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
5756anbi1d 631 . . . . . . 7 (𝑣 = (𝑓‘2) → (((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
5857rexbidv 3157 . . . . . 6 (𝑣 = (𝑓‘2) → (∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
59582rexbidv 3202 . . . . 5 (𝑣 = (𝑓‘2) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6031, 59f1prex 7259 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≠ 2) → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6120, 6, 21, 60mp3an 1463 . . 3 (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6261a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6313, 19, 623bitrd 305 1 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {csn 4589  {cpr 4591   class class class wbr 5107  1-1wf1 6508  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071  cle 11209  2c2 12241  3c3 12242  cz 12529  cuz 12793  ..^cfzo 13615  Basecbs 17179  distcds 17229  DimTarskiGcstrkgld 28358  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-trkgld 28379
This theorem is referenced by:  axtgupdim2  28398
  Copyright terms: Public domain W3C validator