MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg3ld Structured version   Visualization version   GIF version

Theorem istrkg3ld 25712
Description: Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg3ld (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐼   𝑢,𝑃,𝑣,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem istrkg3ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3z 11700 . . . . 5 3 ∈ ℤ
2 2re 11387 . . . . . 6 2 ∈ ℝ
3 3re 11393 . . . . . 6 3 ∈ ℝ
4 2lt3 11492 . . . . . 6 2 < 3
52, 3, 4ltleii 10450 . . . . 5 2 ≤ 3
6 2z 11699 . . . . . 6 2 ∈ ℤ
76eluz1i 11938 . . . . 5 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
81, 5, 7mpbir2an 703 . . . 4 3 ∈ (ℤ‘2)
98a1i 11 . . 3 (𝐺𝑉 → 3 ∈ (ℤ‘2))
10 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
11 istrkg.d . . . 4 = (dist‘𝐺)
12 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgld 25710 . . 3 ((𝐺𝑉 ∧ 3 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
149, 13mpdan 679 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
15 fzo13pr 12807 . . . . . 6 (1..^3) = {1, 2}
16 f1eq2 6312 . . . . . 6 ((1..^3) = {1, 2} → (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃))
1715, 16ax-mp 5 . . . . 5 (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃)
1817anbi1i 618 . . . 4 ((𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1918exbii 1944 . . 3 (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2019a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
21 1z 11697 . . . 4 1 ∈ ℤ
22 1ne2 11528 . . . 4 1 ≠ 2
23 oveq1 6885 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑥) = ((𝑓‘1) 𝑥))
24 eqidd 2800 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑥) = (𝑣 𝑥))
2523, 24eqeq12d 2814 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = (𝑣 𝑥)))
26 oveq1 6885 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑦) = ((𝑓‘1) 𝑦))
27 eqidd 2800 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑦) = (𝑣 𝑦))
2826, 27eqeq12d 2814 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = (𝑣 𝑦)))
29 oveq1 6885 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑧) = ((𝑓‘1) 𝑧))
30 eqidd 2800 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑧) = (𝑣 𝑧))
3129, 30eqeq12d 2814 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = (𝑣 𝑧)))
3225, 28, 313anbi123d 1561 . . . . . . . . 9 (𝑢 = (𝑓‘1) → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧))))
3332anbi1d 624 . . . . . . . 8 (𝑢 = (𝑓‘1) → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3433rexbidv 3233 . . . . . . 7 (𝑢 = (𝑓‘1) → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3534rexbidv 3233 . . . . . 6 (𝑢 = (𝑓‘1) → (∃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3635rexbidv 3233 . . . . 5 (𝑢 = (𝑓‘1) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
37 oveq1 6885 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑥) = ((𝑓‘2) 𝑥))
3837eqeq2d 2809 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
39 oveq1 6885 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑦) = ((𝑓‘2) 𝑦))
4039eqeq2d 2809 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
41 oveq1 6885 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑧) = ((𝑓‘2) 𝑧))
4241eqeq2d 2809 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
4338, 40, 423anbi123d 1561 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
44 2p1e3 11462 . . . . . . . . . . . . . 14 (2 + 1) = 3
4544oveq2i 6889 . . . . . . . . . . . . 13 (2..^(2 + 1)) = (2..^3)
46 fzosn 12794 . . . . . . . . . . . . . 14 (2 ∈ ℤ → (2..^(2 + 1)) = {2})
476, 46ax-mp 5 . . . . . . . . . . . . 13 (2..^(2 + 1)) = {2}
4845, 47eqtr3i 2823 . . . . . . . . . . . 12 (2..^3) = {2}
4948raleqi 3325 . . . . . . . . . . 11 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)))
50 fveq2 6411 . . . . . . . . . . . . . . . 16 (𝑗 = 2 → (𝑓𝑗) = (𝑓‘2))
5150oveq1d 6893 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑥) = ((𝑓‘2) 𝑥))
5251eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
5350oveq1d 6893 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑦) = ((𝑓‘2) 𝑦))
5453eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
5550oveq1d 6893 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑧) = ((𝑓‘2) 𝑧))
5655eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5752, 54, 563anbi123d 1561 . . . . . . . . . . . . 13 (𝑗 = 2 → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
5857ralsng 4409 . . . . . . . . . . . 12 (2 ∈ ℤ → (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
596, 58ax-mp 5 . . . . . . . . . . 11 (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6049, 59bitri 267 . . . . . . . . . 10 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6143, 60syl6bbr 281 . . . . . . . . 9 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ ∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
6261anbi1d 624 . . . . . . . 8 (𝑣 = (𝑓‘2) → (((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6362rexbidv 3233 . . . . . . 7 (𝑣 = (𝑓‘2) → (∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6463rexbidv 3233 . . . . . 6 (𝑣 = (𝑓‘2) → (∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6564rexbidv 3233 . . . . 5 (𝑣 = (𝑓‘2) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6636, 65f1prex 6767 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≠ 2) → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6721, 6, 22, 66mp3an 1586 . . 3 (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6867a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6914, 20, 683bitrd 297 1 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3o 1107  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wne 2971  wral 3089  wrex 3090  {csn 4368  {cpr 4370   class class class wbr 4843  1-1wf1 6098  cfv 6101  (class class class)co 6878  1c1 10225   + caddc 10227  cle 10364  2c2 11368  3c3 11369  cz 11666  cuz 11930  ..^cfzo 12720  Basecbs 16184  distcds 16276  DimTarskiGcstrkgld 25685  Itvcitv 25687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-trkgld 25703
This theorem is referenced by:  axtgupdim2  25722
  Copyright terms: Public domain W3C validator