| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| itgeq1d.aeqb | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| itgeq1d | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1d.aeqb | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | itgeq1 25702 | . 2 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∫citg 25547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seq 13911 df-sum 15596 df-itg 25552 |
| This theorem is referenced by: itgspltprt 46101 fourierdlem73 46301 fourierdlem81 46309 fourierdlem92 46320 fourierdlem93 46321 fourierdlem103 46331 fourierdlem104 46332 fourierdlem107 46335 fourierdlem109 46337 fourierdlem111 46339 |
| Copyright terms: Public domain | W3C validator |