| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| itgeq1d.aeqb | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| itgeq1d | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1d.aeqb | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | itgeq1 25745 | . 2 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∫citg 25590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seq 14025 df-sum 15706 df-itg 25595 |
| This theorem is referenced by: itgspltprt 45966 fourierdlem73 46166 fourierdlem81 46174 fourierdlem92 46185 fourierdlem93 46186 fourierdlem103 46196 fourierdlem104 46197 fourierdlem107 46200 fourierdlem109 46202 fourierdlem111 46204 |
| Copyright terms: Public domain | W3C validator |