| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| itgeq1d.aeqb | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| itgeq1d | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1d.aeqb | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | itgeq1 25731 | . 2 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∫citg 25576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-sum 15708 df-itg 25581 |
| This theorem is referenced by: itgspltprt 45975 fourierdlem73 46175 fourierdlem81 46183 fourierdlem92 46194 fourierdlem93 46195 fourierdlem103 46205 fourierdlem104 46206 fourierdlem107 46209 fourierdlem109 46211 fourierdlem111 46213 |
| Copyright terms: Public domain | W3C validator |