Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq1d Structured version   Visualization version   GIF version

Theorem itgeq1d 45962
Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
itgeq1d.aeqb (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
itgeq1d (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem itgeq1d
StepHypRef Expression
1 itgeq1d.aeqb . 2 (𝜑𝐴 = 𝐵)
2 itgeq1 25681 . 2 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
31, 2syl 17 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-sum 15660  df-itg 25531
This theorem is referenced by:  itgspltprt  45984  fourierdlem73  46184  fourierdlem81  46192  fourierdlem92  46203  fourierdlem93  46204  fourierdlem103  46214  fourierdlem104  46215  fourierdlem107  46218  fourierdlem109  46220  fourierdlem111  46222
  Copyright terms: Public domain W3C validator