Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mncply Structured version   Visualization version   GIF version

Theorem mncply 42835
Description: A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mncply (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆))

Proof of Theorem mncply
StepHypRef Expression
1 elmnc 42834 . 2 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
21simplbi 496 1 (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6546  1c1 11150  Polycply 26208  coeffccoe 26210  degcdgr 26211   Monic cmnc 42829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-cnex 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fv 6554  df-ply 26212  df-mnc 42831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator