Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mncply Structured version   Visualization version   GIF version

Theorem mncply 41869
Description: A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mncply (𝑃 ∈ ( Monic β€˜π‘†) β†’ 𝑃 ∈ (Polyβ€˜π‘†))

Proof of Theorem mncply
StepHypRef Expression
1 elmnc 41868 . 2 (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
21simplbi 498 1 (𝑃 ∈ ( Monic β€˜π‘†) β†’ 𝑃 ∈ (Polyβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  1c1 11110  Polycply 25697  coeffccoe 25699  degcdgr 25700   Monic cmnc 41863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-cnex 11165
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ply 25701  df-mnc 41865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator