Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnccoe Structured version   Visualization version   GIF version

Theorem mnccoe 41494
Description: A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mnccoe (𝑃 ∈ ( Monic β€˜π‘†) β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1)

Proof of Theorem mnccoe
StepHypRef Expression
1 elmnc 41492 . 2 (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
21simprbi 498 1 (𝑃 ∈ ( Monic β€˜π‘†) β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  β€˜cfv 6501  1c1 11059  Polycply 25561  coeffccoe 25563  degcdgr 25564   Monic cmnc 41487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-cnex 11114
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fv 6509  df-ply 25565  df-mnc 41489
This theorem is referenced by:  mncn0  41495
  Copyright terms: Public domain W3C validator