Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnccoe Structured version   Visualization version   GIF version

Theorem mnccoe 41880
Description: A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mnccoe (𝑃 ∈ ( Monic β€˜π‘†) β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1)

Proof of Theorem mnccoe
StepHypRef Expression
1 elmnc 41878 . 2 (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
21simprbi 498 1 (𝑃 ∈ ( Monic β€˜π‘†) β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  1c1 11111  Polycply 25698  coeffccoe 25700  degcdgr 25701   Monic cmnc 41873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-cnex 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ply 25702  df-mnc 41875
This theorem is referenced by:  mncn0  41881
  Copyright terms: Public domain W3C validator