MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustsms Structured version   Visualization version   GIF version

Theorem haustsms 24057
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmscl.b 𝐵 = (Base‘𝐺)
tsmscl.1 (𝜑𝐺 ∈ CMnd)
tsmscl.2 (𝜑𝐺 ∈ TopSp)
tsmscl.a (𝜑𝐴𝑉)
tsmscl.f (𝜑𝐹:𝐴𝐵)
haustsms.j 𝐽 = (TopOpen‘𝐺)
haustsms.h (𝜑𝐽 ∈ Haus)
Assertion
Ref Expression
haustsms (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem haustsms
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustsms.h . . 3 (𝜑𝐽 ∈ Haus)
2 eqid 2731 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
3 eqid 2731 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
4 eqid 2731 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
5 tsmscl.a . . . . 5 (𝜑𝐴𝑉)
62, 3, 4, 5tsmsfbas 24049 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
7 fgcl 23799 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
86, 7syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
9 tsmscl.b . . . . . 6 𝐵 = (Base‘𝐺)
10 tsmscl.1 . . . . . 6 (𝜑𝐺 ∈ CMnd)
11 tsmscl.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
129, 2, 10, 5, 11tsmslem1 24050 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
13 tsmscl.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
14 haustsms.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
159, 14tpsuni 22857 . . . . . . 7 (𝐺 ∈ TopSp → 𝐵 = 𝐽)
1613, 15syl 17 . . . . . 6 (𝜑𝐵 = 𝐽)
1716adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 = 𝐽)
1812, 17eleqtrd 2833 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐽)
1918fmpttd 7054 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶ 𝐽)
20 eqid 2731 . . . 4 𝐽 = 𝐽
2120hausflf 23918 . . 3 ((𝐽 ∈ Haus ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶ 𝐽) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
221, 8, 19, 21syl3anc 1373 . 2 (𝜑 → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
239, 14, 2, 4, 10, 5, 11tsmsval 24052 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
2423eleq2d 2817 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
2524mobidv 2544 . 2 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
2622, 25mpbird 257 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ∃*wmo 2533  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4549   cuni 4858  cmpt 5174  ran crn 5620  cres 5621  wf 6483  cfv 6487  (class class class)co 7352  Fincfn 8875  Basecbs 17126  TopOpenctopn 17331   Σg cgsu 17350  CMndccmn 19698  fBascfbas 21285  filGencfg 21286  TopSpctps 22853  Hauscha 23229  Filcfil 23766   fLimf cflf 23856   tsums ctsu 24047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-0g 17351  df-gsum 17352  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-cntz 19235  df-cmn 19700  df-fbas 21294  df-fg 21295  df-top 22815  df-topon 22832  df-topsp 22854  df-nei 23019  df-haus 23236  df-fil 23767  df-flim 23860  df-flf 23861  df-tsms 24048
This theorem is referenced by:  haustsms2  24058  taylf  26301
  Copyright terms: Public domain W3C validator