MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustsms Structured version   Visualization version   GIF version

Theorem haustsms 24044
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmscl.b 𝐵 = (Base‘𝐺)
tsmscl.1 (𝜑𝐺 ∈ CMnd)
tsmscl.2 (𝜑𝐺 ∈ TopSp)
tsmscl.a (𝜑𝐴𝑉)
tsmscl.f (𝜑𝐹:𝐴𝐵)
haustsms.j 𝐽 = (TopOpen‘𝐺)
haustsms.h (𝜑𝐽 ∈ Haus)
Assertion
Ref Expression
haustsms (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem haustsms
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustsms.h . . 3 (𝜑𝐽 ∈ Haus)
2 eqid 2730 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
3 eqid 2730 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
4 eqid 2730 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
5 tsmscl.a . . . . 5 (𝜑𝐴𝑉)
62, 3, 4, 5tsmsfbas 24036 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
7 fgcl 23786 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
86, 7syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
9 tsmscl.b . . . . . 6 𝐵 = (Base‘𝐺)
10 tsmscl.1 . . . . . 6 (𝜑𝐺 ∈ CMnd)
11 tsmscl.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
129, 2, 10, 5, 11tsmslem1 24037 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
13 tsmscl.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
14 haustsms.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
159, 14tpsuni 22844 . . . . . . 7 (𝐺 ∈ TopSp → 𝐵 = 𝐽)
1613, 15syl 17 . . . . . 6 (𝜑𝐵 = 𝐽)
1716adantr 480 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 = 𝐽)
1812, 17eleqtrd 2831 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐽)
1918fmpttd 7043 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶ 𝐽)
20 eqid 2730 . . . 4 𝐽 = 𝐽
2120hausflf 23905 . . 3 ((𝐽 ∈ Haus ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶ 𝐽) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
221, 8, 19, 21syl3anc 1373 . 2 (𝜑 → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
239, 14, 2, 4, 10, 5, 11tsmsval 24039 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
2423eleq2d 2815 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
2524mobidv 2543 . 2 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
2622, 25mpbird 257 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  ∃*wmo 2532  {crab 3393  cin 3899  wss 3900  𝒫 cpw 4548   cuni 4857  cmpt 5170  ran crn 5615  cres 5616  wf 6473  cfv 6477  (class class class)co 7341  Fincfn 8864  Basecbs 17112  TopOpenctopn 17317   Σg cgsu 17336  CMndccmn 19685  fBascfbas 21272  filGencfg 21273  TopSpctps 22840  Hauscha 23216  Filcfil 23753   fLimf cflf 23843   tsums ctsu 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-0g 17337  df-gsum 17338  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-cntz 19222  df-cmn 19687  df-fbas 21281  df-fg 21282  df-top 22802  df-topon 22819  df-topsp 22841  df-nei 23006  df-haus 23223  df-fil 23754  df-flim 23847  df-flf 23848  df-tsms 24035
This theorem is referenced by:  haustsms2  24045  taylf  26288
  Copyright terms: Public domain W3C validator