MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustsms Structured version   Visualization version   GIF version

Theorem haustsms 23631
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmscl.b 𝐡 = (Baseβ€˜πΊ)
tsmscl.1 (πœ‘ β†’ 𝐺 ∈ CMnd)
tsmscl.2 (πœ‘ β†’ 𝐺 ∈ TopSp)
tsmscl.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
tsmscl.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
haustsms.j 𝐽 = (TopOpenβ€˜πΊ)
haustsms.h (πœ‘ β†’ 𝐽 ∈ Haus)
Assertion
Ref Expression
haustsms (πœ‘ β†’ βˆƒ*π‘₯ π‘₯ ∈ (𝐺 tsums 𝐹))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐹   π‘₯,𝐺   π‘₯,𝐽   πœ‘,π‘₯
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem haustsms
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustsms.h . . 3 (πœ‘ β†’ 𝐽 ∈ Haus)
2 eqid 2732 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
3 eqid 2732 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})
4 eqid 2732 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})
5 tsmscl.a . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑉)
62, 3, 4, 5tsmsfbas 23623 . . . 4 (πœ‘ β†’ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧}) ∈ (fBasβ€˜(𝒫 𝐴 ∩ Fin)))
7 fgcl 23373 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧}) ∈ (fBasβ€˜(𝒫 𝐴 ∩ Fin)) β†’ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})) ∈ (Filβ€˜(𝒫 𝐴 ∩ Fin)))
86, 7syl 17 . . 3 (πœ‘ β†’ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})) ∈ (Filβ€˜(𝒫 𝐴 ∩ Fin)))
9 tsmscl.b . . . . . 6 𝐡 = (Baseβ€˜πΊ)
10 tsmscl.1 . . . . . 6 (πœ‘ β†’ 𝐺 ∈ CMnd)
11 tsmscl.f . . . . . 6 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
129, 2, 10, 5, 11tsmslem1 23624 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ 𝐡)
13 tsmscl.2 . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TopSp)
14 haustsms.j . . . . . . . 8 𝐽 = (TopOpenβ€˜πΊ)
159, 14tpsuni 22429 . . . . . . 7 (𝐺 ∈ TopSp β†’ 𝐡 = βˆͺ 𝐽)
1613, 15syl 17 . . . . . 6 (πœ‘ β†’ 𝐡 = βˆͺ 𝐽)
1716adantr 481 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝐡 = βˆͺ 𝐽)
1812, 17eleqtrd 2835 . . . 4 ((πœ‘ ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ βˆͺ 𝐽)
1918fmpttd 7111 . . 3 (πœ‘ β†’ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))):(𝒫 𝐴 ∩ Fin)⟢βˆͺ 𝐽)
20 eqid 2732 . . . 4 βˆͺ 𝐽 = βˆͺ 𝐽
2120hausflf 23492 . . 3 ((𝐽 ∈ Haus ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})) ∈ (Filβ€˜(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))):(𝒫 𝐴 ∩ Fin)⟢βˆͺ 𝐽) β†’ βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})))β€˜(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))))
221, 8, 19, 21syl3anc 1371 . 2 (πœ‘ β†’ βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})))β€˜(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))))
239, 14, 2, 4, 10, 5, 11tsmsval 23626 . . . 4 (πœ‘ β†’ (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})))β€˜(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))))
2423eleq2d 2819 . . 3 (πœ‘ β†’ (π‘₯ ∈ (𝐺 tsums 𝐹) ↔ π‘₯ ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})))β€˜(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))))))
2524mobidv 2543 . 2 (πœ‘ β†’ (βˆƒ*π‘₯ π‘₯ ∈ (𝐺 tsums 𝐹) ↔ βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 βŠ† 𝑧})))β€˜(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))))))
2622, 25mpbird 256 1 (πœ‘ β†’ βˆƒ*π‘₯ π‘₯ ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒ*wmo 2532  {crab 3432   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907   ↦ cmpt 5230  ran crn 5676   β†Ύ cres 5677  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  Basecbs 17140  TopOpenctopn 17363   Ξ£g cgsu 17382  CMndccmn 19642  fBascfbas 20924  filGencfg 20925  TopSpctps 22425  Hauscha 22803  Filcfil 23340   fLimf cflf 23430   tsums ctsu 23621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cntz 19175  df-cmn 19644  df-fbas 20933  df-fg 20934  df-top 22387  df-topon 22404  df-topsp 22426  df-nei 22593  df-haus 22810  df-fil 23341  df-flim 23434  df-flf 23435  df-tsms 23622
This theorem is referenced by:  haustsms2  23632  taylf  25864
  Copyright terms: Public domain W3C validator