| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > haustsms | Structured version Visualization version GIF version | ||
| Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmscl.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmscl.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmscl.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| tsmscl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmscl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| haustsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| haustsms.h | ⊢ (𝜑 → 𝐽 ∈ Haus) |
| Ref | Expression |
|---|---|
| haustsms | ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustsms.h | . . 3 ⊢ (𝜑 → 𝐽 ∈ Haus) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) | |
| 4 | eqid 2734 | . . . . 5 ⊢ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) | |
| 5 | tsmscl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | 2, 3, 4, 5 | tsmsfbas 24051 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin))) |
| 7 | fgcl 23801 | . . . 4 ⊢ (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
| 9 | tsmscl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | tsmscl.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 11 | tsmscl.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | 9, 2, 10, 5, 11 | tsmslem1 24052 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝐵) |
| 13 | tsmscl.2 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
| 14 | haustsms.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 15 | 9, 14 | tpsuni 22859 | . . . . . . 7 ⊢ (𝐺 ∈ TopSp → 𝐵 = ∪ 𝐽) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 = ∪ 𝐽) |
| 18 | 12, 17 | eleqtrd 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ ∪ 𝐽) |
| 19 | 18 | fmpttd 7101 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))):(𝒫 𝐴 ∩ Fin)⟶∪ 𝐽) |
| 20 | eqid 2734 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 21 | 20 | hausflf 23920 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))):(𝒫 𝐴 ∩ Fin)⟶∪ 𝐽) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
| 22 | 1, 8, 19, 21 | syl3anc 1372 | . 2 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
| 23 | 9, 14, 2, 4, 10, 5, 11 | tsmsval 24054 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
| 24 | 23 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))))) |
| 25 | 24 | mobidv 2547 | . 2 ⊢ (𝜑 → (∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))))) |
| 26 | 22, 25 | mpbird 257 | 1 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 {crab 3413 ∩ cin 3923 ⊆ wss 3924 𝒫 cpw 4573 ∪ cuni 4880 ↦ cmpt 5198 ran crn 5652 ↾ cres 5653 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 Fincfn 8953 Basecbs 17213 TopOpenctopn 17420 Σg cgsu 17439 CMndccmn 19746 fBascfbas 21288 filGencfg 21289 TopSpctps 22855 Hauscha 23231 Filcfil 23768 fLimf cflf 23858 tsums ctsu 24049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 df-seq 14009 df-hash 14337 df-0g 17440 df-gsum 17441 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-cntz 19285 df-cmn 19748 df-fbas 21297 df-fg 21298 df-top 22817 df-topon 22834 df-topsp 22856 df-nei 23021 df-haus 23238 df-fil 23769 df-flim 23862 df-flf 23863 df-tsms 24050 |
| This theorem is referenced by: haustsms2 24060 taylf 26305 |
| Copyright terms: Public domain | W3C validator |