MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmo Structured version   Visualization version   GIF version

Theorem limcmo 25042
Description: If 𝐵 is a limit point of the domain of the function 𝐹, then there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝐴   𝜑,𝑥

Proof of Theorem limcmo
StepHypRef Expression
1 limcflf.k . . . 4 𝐾 = (TopOpen‘ℂfld)
21cnfldhaus 23944 . . 3 𝐾 ∈ Haus
3 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
4 limcflf.a . . . 4 (𝜑𝐴 ⊆ ℂ)
5 limcflf.b . . . 4 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
6 eqid 2740 . . . 4 (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵})
7 eqid 2740 . . . 4 (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) = (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵}))
83, 4, 5, 1, 6, 7limcflflem 25040 . . 3 (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) ∈ (Fil‘(𝐴 ∖ {𝐵})))
9 difss 4071 . . . 4 (𝐴 ∖ {𝐵}) ⊆ 𝐴
10 fssres 6637 . . . 4 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
113, 9, 10sylancl 586 . . 3 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
121cnfldtopon 23942 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
1312toponunii 22061 . . . 4 ℂ = 𝐾
1413hausflf 23144 . . 3 ((𝐾 ∈ Haus ∧ (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) ∈ (Fil‘(𝐴 ∖ {𝐵})) ∧ (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) → ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵}))))
152, 8, 11, 14mp3an2i 1465 . 2 (𝜑 → ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵}))))
163, 4, 5, 1, 6, 7limcflf 25041 . . . 4 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵}))))
1716eleq2d 2826 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵})))))
1817mobidv 2551 . 2 (𝜑 → (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵})))))
1915, 18mpbird 256 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  ∃*wmo 2540  cdif 3889  wss 3892  {csn 4567  cres 5591  wf 6427  cfv 6431  (class class class)co 7269  cc 10868  t crest 17127  TopOpenctopn 17128  fldccnfld 20593  neicnei 22244  limPtclp 22281  Hauscha 22455  Filcfil 22992   fLimf cflf 23082   lim climc 25022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-map 8598  df-pm 8599  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fi 9146  df-sup 9177  df-inf 9178  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-icc 13083  df-fz 13237  df-seq 13718  df-exp 13779  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-struct 16844  df-slot 16879  df-ndx 16891  df-base 16909  df-plusg 16971  df-mulr 16972  df-starv 16973  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-rest 17129  df-topn 17130  df-topgen 17150  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-fbas 20590  df-fg 20591  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-ntr 22167  df-cls 22168  df-nei 22245  df-lp 22283  df-cnp 22375  df-haus 22462  df-fil 22993  df-fm 23085  df-flim 23086  df-flf 23087  df-xms 23469  df-ms 23470  df-limc 25026
This theorem is referenced by:  perfdvf  25063  ellimciota  43124
  Copyright terms: Public domain W3C validator