| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcmo | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a limit point of the domain of the function 𝐹, then there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcflf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| limcflf.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| limcflf.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
| limcflf.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| limcmo | ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldhaus 24672 | . . 3 ⊢ 𝐾 ∈ Haus |
| 3 | limcflf.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 4 | limcflf.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 5 | limcflf.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) | |
| 7 | eqid 2729 | . . . 4 ⊢ (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) = (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) | |
| 8 | 3, 4, 5, 1, 6, 7 | limcflflem 25781 | . . 3 ⊢ (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) ∈ (Fil‘(𝐴 ∖ {𝐵}))) |
| 9 | difss 4099 | . . . 4 ⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | |
| 10 | fssres 6726 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) | |
| 11 | 3, 9, 10 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) |
| 12 | 1 | cnfldtopon 24670 | . . . . 5 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 13 | 12 | toponunii 22803 | . . . 4 ⊢ ℂ = ∪ 𝐾 |
| 14 | 13 | hausflf 23884 | . . 3 ⊢ ((𝐾 ∈ Haus ∧ (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})) ∈ (Fil‘(𝐴 ∖ {𝐵})) ∧ (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) → ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵})))) |
| 15 | 2, 8, 11, 14 | mp3an2i 1468 | . 2 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵})))) |
| 16 | 3, 4, 5, 1, 6, 7 | limcflf 25782 | . . . 4 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵})))) |
| 17 | 16 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵}))))) |
| 18 | 17 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ↔ ∃*𝑥 𝑥 ∈ ((𝐾 fLimf (((nei‘𝐾)‘{𝐵}) ↾t (𝐴 ∖ {𝐵})))‘(𝐹 ↾ (𝐴 ∖ {𝐵}))))) |
| 19 | 15, 18 | mpbird 257 | 1 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ↾t crest 17383 TopOpenctopn 17384 ℂfldccnfld 21264 neicnei 22984 limPtclp 23021 Hauscha 23195 Filcfil 23732 fLimf cflf 23822 limℂ climc 25763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-cnp 23115 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-limc 25767 |
| This theorem is referenced by: perfdvf 25804 ellimciota 45612 |
| Copyright terms: Public domain | W3C validator |