MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf Structured version   Visualization version   GIF version

Theorem hausflf 24021
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = 𝐽
Assertion
Ref Expression
hausflf ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem hausflf
StepHypRef Expression
1 hausflimi 24004 . . 3 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
213ad2ant1 1132 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
3 haustop 23355 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4 hausflf.x . . . . . . 7 𝑋 = 𝐽
54toptopon 22939 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 218 . . . . 5 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘𝑋))
7 flfval 24014 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
86, 7syl3an1 1162 . . . 4 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
98eleq2d 2825 . . 3 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
109mobidv 2547 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
112, 10mpbird 257 1 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  ∃*wmo 2536   cuni 4912  wf 6559  cfv 6563  (class class class)co 7431  Topctop 22915  TopOnctopon 22932  Hauscha 23332  Filcfil 23869   FilMap cfm 23957   fLim cflim 23958   fLimf cflf 23959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-fbas 21379  df-top 22916  df-topon 22933  df-nei 23122  df-haus 23339  df-fil 23870  df-flim 23963  df-flf 23964
This theorem is referenced by:  hausflf2  24022  cnextfun  24088  haustsms  24160  limcmo  25932
  Copyright terms: Public domain W3C validator