![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hausflf | Structured version Visualization version GIF version |
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
hausflf.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
hausflf | β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β β*π₯ π₯ β ((π½ fLimf πΏ)βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hausflimi 23705 | . . 3 β’ (π½ β Haus β β*π₯ π₯ β (π½ fLim ((π FilMap πΉ)βπΏ))) | |
2 | 1 | 3ad2ant1 1132 | . 2 β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β β*π₯ π₯ β (π½ fLim ((π FilMap πΉ)βπΏ))) |
3 | haustop 23056 | . . . . . 6 β’ (π½ β Haus β π½ β Top) | |
4 | hausflf.x | . . . . . . 7 β’ π = βͺ π½ | |
5 | 4 | toptopon 22640 | . . . . . 6 β’ (π½ β Top β π½ β (TopOnβπ)) |
6 | 3, 5 | sylib 217 | . . . . 5 β’ (π½ β Haus β π½ β (TopOnβπ)) |
7 | flfval 23715 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
8 | 6, 7 | syl3an1 1162 | . . . 4 β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) |
9 | 8 | eleq2d 2818 | . . 3 β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π₯ β ((π½ fLimf πΏ)βπΉ) β π₯ β (π½ fLim ((π FilMap πΉ)βπΏ)))) |
10 | 9 | mobidv 2542 | . 2 β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (β*π₯ π₯ β ((π½ fLimf πΏ)βπΉ) β β*π₯ π₯ β (π½ fLim ((π FilMap πΉ)βπΏ)))) |
11 | 2, 10 | mpbird 257 | 1 β’ ((π½ β Haus β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β β*π₯ π₯ β ((π½ fLimf πΏ)βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 β*wmo 2531 βͺ cuni 4908 βΆwf 6539 βcfv 6543 (class class class)co 7412 Topctop 22616 TopOnctopon 22633 Hauscha 23033 Filcfil 23570 FilMap cfm 23658 fLim cflim 23659 fLimf cflf 23660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-fbas 21142 df-top 22617 df-topon 22634 df-nei 22823 df-haus 23040 df-fil 23571 df-flim 23664 df-flf 23665 |
This theorem is referenced by: hausflf2 23723 cnextfun 23789 haustsms 23861 limcmo 25632 |
Copyright terms: Public domain | W3C validator |