MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf Structured version   Visualization version   GIF version

Theorem hausflf 23722
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
hausflf ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf 𝐿)β€˜πΉ))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐿   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem hausflf
StepHypRef Expression
1 hausflimi 23705 . . 3 (𝐽 ∈ Haus β†’ βˆƒ*π‘₯ π‘₯ ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ)))
213ad2ant1 1132 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ βˆƒ*π‘₯ π‘₯ ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ)))
3 haustop 23056 . . . . . 6 (𝐽 ∈ Haus β†’ 𝐽 ∈ Top)
4 hausflf.x . . . . . . 7 𝑋 = βˆͺ 𝐽
54toptopon 22640 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
63, 5sylib 217 . . . . 5 (𝐽 ∈ Haus β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
7 flfval 23715 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ ((𝐽 fLimf 𝐿)β€˜πΉ) = (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ)))
86, 7syl3an1 1162 . . . 4 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ ((𝐽 fLimf 𝐿)β€˜πΉ) = (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ)))
98eleq2d 2818 . . 3 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ (π‘₯ ∈ ((𝐽 fLimf 𝐿)β€˜πΉ) ↔ π‘₯ ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ))))
109mobidv 2542 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ (βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf 𝐿)β€˜πΉ) ↔ βˆƒ*π‘₯ π‘₯ ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)β€˜πΏ))))
112, 10mpbird 257 1 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Filβ€˜π‘Œ) ∧ 𝐹:π‘ŒβŸΆπ‘‹) β†’ βˆƒ*π‘₯ π‘₯ ∈ ((𝐽 fLimf 𝐿)β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆƒ*wmo 2531  βˆͺ cuni 4908  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  Topctop 22616  TopOnctopon 22633  Hauscha 23033  Filcfil 23570   FilMap cfm 23658   fLim cflim 23659   fLimf cflf 23660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-fbas 21142  df-top 22617  df-topon 22634  df-nei 22823  df-haus 23040  df-fil 23571  df-flim 23664  df-flf 23665
This theorem is referenced by:  hausflf2  23723  cnextfun  23789  haustsms  23861  limcmo  25632
  Copyright terms: Public domain W3C validator