![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hausflf | Structured version Visualization version GIF version |
Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
hausflf.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hausflf | ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hausflimi 23883 | . . 3 ⊢ (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
3 | haustop 23234 | . . . . . 6 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
4 | hausflf.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | toptopon 22818 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
6 | 3, 5 | sylib 217 | . . . . 5 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘𝑋)) |
7 | flfval 23893 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
8 | 6, 7 | syl3an1 1161 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
9 | 8 | eleq2d 2815 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))) |
10 | 9 | mobidv 2539 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))) |
11 | 2, 10 | mpbird 257 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃*wmo 2528 ∪ cuni 4908 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 Topctop 22794 TopOnctopon 22811 Hauscha 23211 Filcfil 23748 FilMap cfm 23836 fLim cflim 23837 fLimf cflf 23838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8846 df-fbas 21275 df-top 22795 df-topon 22812 df-nei 23001 df-haus 23218 df-fil 23749 df-flim 23842 df-flf 23843 |
This theorem is referenced by: hausflf2 23901 cnextfun 23967 haustsms 24039 limcmo 25810 |
Copyright terms: Public domain | W3C validator |