| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausflf | Structured version Visualization version GIF version | ||
| Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| hausflf.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hausflf | ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hausflimi 23874 | . . 3 ⊢ (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 3 | haustop 23225 | . . . . . 6 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | |
| 4 | hausflf.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | toptopon 22811 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | 3, 5 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | flfval 23884 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 8 | 6, 7 | syl3an1 1163 | . . . 4 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
| 9 | 8 | eleq2d 2815 | . . 3 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))) |
| 10 | 9 | mobidv 2543 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))) |
| 11 | 2, 10 | mpbird 257 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 ∪ cuni 4874 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Topctop 22787 TopOnctopon 22804 Hauscha 23202 Filcfil 23739 FilMap cfm 23827 fLim cflim 23828 fLimf cflf 23829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-fbas 21268 df-top 22788 df-topon 22805 df-nei 22992 df-haus 23209 df-fil 23740 df-flim 23833 df-flf 23834 |
| This theorem is referenced by: hausflf2 23892 cnextfun 23958 haustsms 24030 limcmo 25790 |
| Copyright terms: Public domain | W3C validator |