Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  l1cvpat Structured version   Visualization version   GIF version

Theorem l1cvpat 39010
Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 39432 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
l1cvpat.v 𝑉 = (Base‘𝑊)
l1cvpat.s 𝑆 = (LSubSp‘𝑊)
l1cvpat.p = (LSSum‘𝑊)
l1cvpat.a 𝐴 = (LSAtoms‘𝑊)
l1cvpat.c 𝐶 = ( ⋖L𝑊)
l1cvpat.w (𝜑𝑊 ∈ LVec)
l1cvpat.u (𝜑𝑈𝑆)
l1cvpat.q (𝜑𝑄𝐴)
l1cvpat.l (𝜑𝑈𝐶𝑉)
l1cvpat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
l1cvpat (𝜑 → (𝑈 𝑄) = 𝑉)

Proof of Theorem l1cvpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 l1cvpat.q . . 3 (𝜑𝑄𝐴)
2 l1cvpat.w . . . 4 (𝜑𝑊 ∈ LVec)
3 l1cvpat.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2740 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 eqid 2740 . . . . 5 (0g𝑊) = (0g𝑊)
6 l1cvpat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38947 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))
10 l1cvpat.m . 2 (𝜑 → ¬ 𝑄𝑈)
11 eldifi 4154 . . . 4 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) → 𝑣𝑉)
12 l1cvpat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
13 lveclmod 21128 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
142, 13syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
15143ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LMod)
16 l1cvpat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
17163ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈𝑆)
18 simp2 1137 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑣𝑉)
193, 12, 4, 15, 17, 18ellspsn5b 21016 . . . . . . . 8 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (𝑣𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
2019notbid 318 . . . . . . 7 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
21 l1cvpat.p . . . . . . . . 9 = (LSSum‘𝑊)
22 eqid 2740 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
2323ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec)
24 l1cvpat.l . . . . . . . . . . 11 (𝜑𝑈𝐶𝑉)
25 l1cvpat.c . . . . . . . . . . . 12 𝐶 = ( ⋖L𝑊)
263, 12, 22, 25, 2islshpcv 39009 . . . . . . . . . . 11 (𝜑 → (𝑈 ∈ (LSHyp‘𝑊) ↔ (𝑈𝑆𝑈𝐶𝑉)))
2716, 24, 26mpbir2and 712 . . . . . . . . . 10 (𝜑𝑈 ∈ (LSHyp‘𝑊))
28273ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ (LSHyp‘𝑊))
293, 4, 21, 22, 23, 28, 18lshpnelb 38940 . . . . . . . 8 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3029biimpd 229 . . . . . . 7 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3120, 30sylbird 260 . . . . . 6 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
32 sseq1 4034 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑄𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
3332notbid 318 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
34 oveq2 7456 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑄) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
3534eqeq1d 2742 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑄) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3633, 35imbi12d 344 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
37363ad2ant3 1135 . . . . . 6 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3831, 37mpbird 257 . . . . 5 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))
39383exp 1119 . . . 4 (𝜑 → (𝑣𝑉 → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))))
4011, 39syl5 34 . . 3 (𝜑 → (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))))
4140rexlimdv 3159 . 2 (𝜑 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉)))
429, 10, 41mp2d 49 1 (𝜑 → (𝑈 𝑄) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499  LSSumclsm 19676  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LVecclvec 21124  LSAtomsclsa 38930  LSHypclsh 38931  L clcv 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975
This theorem is referenced by:  l1cvat  39011
  Copyright terms: Public domain W3C validator