| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > l1cvpat | Structured version Visualization version GIF version | ||
| Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 39462 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| l1cvpat.v | ⊢ 𝑉 = (Base‘𝑊) |
| l1cvpat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| l1cvpat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| l1cvpat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| l1cvpat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| l1cvpat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| l1cvpat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| l1cvpat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| l1cvpat.l | ⊢ (𝜑 → 𝑈𝐶𝑉) |
| l1cvpat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| l1cvpat | ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | l1cvpat.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 2 | l1cvpat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | l1cvpat.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | l1cvpat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 38977 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 10 | l1cvpat.m | . 2 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
| 11 | eldifi 4090 | . . . 4 ⊢ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → 𝑣 ∈ 𝑉) | |
| 12 | l1cvpat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 13 | lveclmod 21045 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 14 | 2, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LMod) |
| 16 | l1cvpat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ 𝑆) |
| 18 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ 𝑉) | |
| 19 | 3, 12, 4, 15, 17, 18 | ellspsn5b 20933 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (𝑣 ∈ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 20 | 19 | notbid 318 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 21 | l1cvpat.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝑊) | |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
| 23 | 2 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec) |
| 24 | l1cvpat.l | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈𝐶𝑉) | |
| 25 | l1cvpat.c | . . . . . . . . . . . 12 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 26 | 3, 12, 22, 25, 2 | islshpcv 39039 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑈 ∈ (LSHyp‘𝑊) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 27 | 16, 24, 26 | mpbir2and 713 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ (LSHyp‘𝑊)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ (LSHyp‘𝑊)) |
| 29 | 3, 4, 21, 22, 23, 28, 18 | lshpnelb 38970 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 30 | 29 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 31 | 20, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 32 | sseq1 3969 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑄 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) | |
| 33 | 32 | notbid 318 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 34 | oveq2 7377 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
| 35 | 34 | eqeq1d 2731 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 ⊕ 𝑄) = 𝑉 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 36 | 33, 35 | imbi12d 344 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 37 | 36 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 38 | 31, 37 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)) |
| 39 | 38 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 40 | 11, 39 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 41 | 40 | rexlimdv 3132 | . 2 ⊢ (𝜑 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉))) |
| 42 | 9, 10, 41 | mp2d 49 | 1 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 0gc0g 17378 LSSumclsm 19548 LModclmod 20798 LSubSpclss 20869 LSpanclspn 20909 LVecclvec 21041 LSAtomsclsa 38960 LSHypclsh 38961 ⋖L clcv 39004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20651 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lvec 21042 df-lsatoms 38962 df-lshyp 38963 df-lcv 39005 |
| This theorem is referenced by: l1cvat 39041 |
| Copyright terms: Public domain | W3C validator |