Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  l1cvpat Structured version   Visualization version   GIF version

Theorem l1cvpat 36349
 Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 36770 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
l1cvpat.v 𝑉 = (Base‘𝑊)
l1cvpat.s 𝑆 = (LSubSp‘𝑊)
l1cvpat.p = (LSSum‘𝑊)
l1cvpat.a 𝐴 = (LSAtoms‘𝑊)
l1cvpat.c 𝐶 = ( ⋖L𝑊)
l1cvpat.w (𝜑𝑊 ∈ LVec)
l1cvpat.u (𝜑𝑈𝑆)
l1cvpat.q (𝜑𝑄𝐴)
l1cvpat.l (𝜑𝑈𝐶𝑉)
l1cvpat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
l1cvpat (𝜑 → (𝑈 𝑄) = 𝑉)

Proof of Theorem l1cvpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 l1cvpat.q . . 3 (𝜑𝑄𝐴)
2 l1cvpat.w . . . 4 (𝜑𝑊 ∈ LVec)
3 l1cvpat.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2801 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 eqid 2801 . . . . 5 (0g𝑊) = (0g𝑊)
6 l1cvpat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 36286 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 235 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))
10 l1cvpat.m . 2 (𝜑 → ¬ 𝑄𝑈)
11 eldifi 4057 . . . 4 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) → 𝑣𝑉)
12 l1cvpat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
13 lveclmod 19875 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
142, 13syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
15143ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LMod)
16 l1cvpat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
17163ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈𝑆)
18 simp2 1134 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑣𝑉)
193, 12, 4, 15, 17, 18lspsnel5 19764 . . . . . . . 8 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (𝑣𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
2019notbid 321 . . . . . . 7 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
21 l1cvpat.p . . . . . . . . 9 = (LSSum‘𝑊)
22 eqid 2801 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
2323ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec)
24 l1cvpat.l . . . . . . . . . . 11 (𝜑𝑈𝐶𝑉)
25 l1cvpat.c . . . . . . . . . . . 12 𝐶 = ( ⋖L𝑊)
263, 12, 22, 25, 2islshpcv 36348 . . . . . . . . . . 11 (𝜑 → (𝑈 ∈ (LSHyp‘𝑊) ↔ (𝑈𝑆𝑈𝐶𝑉)))
2716, 24, 26mpbir2and 712 . . . . . . . . . 10 (𝜑𝑈 ∈ (LSHyp‘𝑊))
28273ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ (LSHyp‘𝑊))
293, 4, 21, 22, 23, 28, 18lshpnelb 36279 . . . . . . . 8 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3029biimpd 232 . . . . . . 7 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3120, 30sylbird 263 . . . . . 6 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
32 sseq1 3943 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑄𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
3332notbid 321 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈))
34 oveq2 7147 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑄) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
3534eqeq1d 2803 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑄) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
3633, 35imbi12d 348 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
37363ad2ant3 1132 . . . . . 6 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3831, 37mpbird 260 . . . . 5 ((𝜑𝑣𝑉𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))
39383exp 1116 . . . 4 (𝜑 → (𝑣𝑉 → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))))
4011, 39syl5 34 . . 3 (𝜑 → (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉))))
4140rexlimdv 3245 . 2 (𝜑 → (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄𝑈 → (𝑈 𝑄) = 𝑉)))
429, 10, 41mp2d 49 1 (𝜑 → (𝑈 𝑄) = 𝑉)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∃wrex 3110   ∖ cdif 3881   ⊆ wss 3884  {csn 4528   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  0gc0g 16709  LSSumclsm 18755  LModclmod 19631  LSubSpclss 19700  LSpanclspn 19740  LVecclvec 19871  LSAtomsclsa 36269  LSHypclsh 36270   ⋖L clcv 36313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-cntz 18443  df-lsm 18757  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19501  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lvec 19872  df-lsatoms 36271  df-lshyp 36272  df-lcv 36314 This theorem is referenced by:  l1cvat  36350
 Copyright terms: Public domain W3C validator