| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > l1cvpat | Structured version Visualization version GIF version | ||
| Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 39499 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| l1cvpat.v | ⊢ 𝑉 = (Base‘𝑊) |
| l1cvpat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| l1cvpat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| l1cvpat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| l1cvpat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| l1cvpat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| l1cvpat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| l1cvpat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| l1cvpat.l | ⊢ (𝜑 → 𝑈𝐶𝑉) |
| l1cvpat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| l1cvpat | ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | l1cvpat.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 2 | l1cvpat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | l1cvpat.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | l1cvpat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 39014 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 10 | l1cvpat.m | . 2 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
| 11 | eldifi 4111 | . . . 4 ⊢ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → 𝑣 ∈ 𝑉) | |
| 12 | l1cvpat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 13 | lveclmod 21069 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 14 | 2, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LMod) |
| 16 | l1cvpat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ 𝑆) |
| 18 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ 𝑉) | |
| 19 | 3, 12, 4, 15, 17, 18 | ellspsn5b 20957 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (𝑣 ∈ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 20 | 19 | notbid 318 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 21 | l1cvpat.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝑊) | |
| 22 | eqid 2736 | . . . . . . . . 9 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
| 23 | 2 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec) |
| 24 | l1cvpat.l | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈𝐶𝑉) | |
| 25 | l1cvpat.c | . . . . . . . . . . . 12 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 26 | 3, 12, 22, 25, 2 | islshpcv 39076 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑈 ∈ (LSHyp‘𝑊) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 27 | 16, 24, 26 | mpbir2and 713 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ (LSHyp‘𝑊)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ (LSHyp‘𝑊)) |
| 29 | 3, 4, 21, 22, 23, 28, 18 | lshpnelb 39007 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 30 | 29 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 31 | 20, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 32 | sseq1 3989 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑄 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) | |
| 33 | 32 | notbid 318 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 34 | oveq2 7418 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
| 35 | 34 | eqeq1d 2738 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 ⊕ 𝑄) = 𝑉 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 36 | 33, 35 | imbi12d 344 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 37 | 36 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 38 | 31, 37 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)) |
| 39 | 38 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 40 | 11, 39 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 41 | 40 | rexlimdv 3140 | . 2 ⊢ (𝜑 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉))) |
| 42 | 9, 10, 41 | mp2d 49 | 1 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 0gc0g 17458 LSSumclsm 19620 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LVecclvec 21065 LSAtomsclsa 38997 LSHypclsh 38998 ⋖L clcv 39041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lshyp 39000 df-lcv 39042 |
| This theorem is referenced by: l1cvat 39078 |
| Copyright terms: Public domain | W3C validator |