| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > l1cvpat | Structured version Visualization version GIF version | ||
| Description: A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 39477 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| l1cvpat.v | ⊢ 𝑉 = (Base‘𝑊) |
| l1cvpat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| l1cvpat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| l1cvpat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| l1cvpat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| l1cvpat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| l1cvpat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| l1cvpat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| l1cvpat.l | ⊢ (𝜑 → 𝑈𝐶𝑉) |
| l1cvpat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| l1cvpat | ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | l1cvpat.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 2 | l1cvpat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | l1cvpat.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2737 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 6 | l1cvpat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 38992 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣})) |
| 10 | l1cvpat.m | . 2 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
| 11 | eldifi 4131 | . . . 4 ⊢ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → 𝑣 ∈ 𝑉) | |
| 12 | l1cvpat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 13 | lveclmod 21105 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 14 | 2, 13 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 15 | 14 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LMod) |
| 16 | l1cvpat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 17 | 16 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ 𝑆) |
| 18 | simp2 1138 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑣 ∈ 𝑉) | |
| 19 | 3, 12, 4, 15, 17, 18 | ellspsn5b 20993 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (𝑣 ∈ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 20 | 19 | notbid 318 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 21 | l1cvpat.p | . . . . . . . . 9 ⊢ ⊕ = (LSSum‘𝑊) | |
| 22 | eqid 2737 | . . . . . . . . 9 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
| 23 | 2 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑊 ∈ LVec) |
| 24 | l1cvpat.l | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈𝐶𝑉) | |
| 25 | l1cvpat.c | . . . . . . . . . . . 12 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 26 | 3, 12, 22, 25, 2 | islshpcv 39054 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑈 ∈ (LSHyp‘𝑊) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) |
| 27 | 16, 24, 26 | mpbir2and 713 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ (LSHyp‘𝑊)) |
| 28 | 27 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → 𝑈 ∈ (LSHyp‘𝑊)) |
| 29 | 3, 4, 21, 22, 23, 28, 18 | lshpnelb 38985 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 30 | 29 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑣 ∈ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 31 | 20, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 32 | sseq1 4009 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑄 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) | |
| 33 | 32 | notbid 318 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 ↔ ¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈)) |
| 34 | oveq2 7439 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | |
| 35 | 34 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 ⊕ 𝑄) = 𝑉 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
| 36 | 33, 35 | imbi12d 344 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 37 | 36 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉) ↔ (¬ ((LSpan‘𝑊)‘{𝑣}) ⊆ 𝑈 → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
| 38 | 31, 37 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉 ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)) |
| 39 | 38 | 3exp 1120 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 40 | 11, 39 | syl5 34 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) → (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉)))) |
| 41 | 40 | rexlimdv 3153 | . 2 ⊢ (𝜑 → (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (¬ 𝑄 ⊆ 𝑈 → (𝑈 ⊕ 𝑄) = 𝑉))) |
| 42 | 9, 10, 41 | mp2d 49 | 1 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∖ cdif 3948 ⊆ wss 3951 {csn 4626 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 0gc0g 17484 LSSumclsm 19652 LModclmod 20858 LSubSpclss 20929 LSpanclspn 20969 LVecclvec 21101 LSAtomsclsa 38975 LSHypclsh 38976 ⋖L clcv 39019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 |
| This theorem is referenced by: l1cvat 39056 |
| Copyright terms: Public domain | W3C validator |