Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptre2pt Structured version   Visualization version   GIF version

Theorem lptre2pt 41797
Description: If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptre2pt.j 𝐽 = (topGen‘ran (,))
lptre2pt.a (𝜑𝐴 ⊆ ℝ)
lptre2pt.x (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅)
lptre2pt.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
lptre2pt (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦

Proof of Theorem lptre2pt
Dummy variables 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lptre2pt.x . . 3 (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅)
2 n0 4307 . . 3 (((limPt‘𝐽)‘𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
31, 2sylib 219 . 2 (𝜑 → ∃𝑤 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
4 simpr 485 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
5 lptre2pt.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
6 lptre2pt.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
76adantr 481 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝐴 ⊆ ℝ)
8 retop 23297 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
95, 8eqeltri 2906 . . . . . . . . . . 11 𝐽 ∈ Top
10 uniretop 23298 . . . . . . . . . . . . 13 ℝ = (topGen‘ran (,))
115unieqi 4839 . . . . . . . . . . . . 13 𝐽 = (topGen‘ran (,))
1210, 11eqtr4i 2844 . . . . . . . . . . . 12 ℝ = 𝐽
1312lpss 21678 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ) → ((limPt‘𝐽)‘𝐴) ⊆ ℝ)
149, 7, 13sylancr 587 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ((limPt‘𝐽)‘𝐴) ⊆ ℝ)
1514, 4sseldd 3965 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ℝ)
165, 7, 15islptre 41776 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
174, 16mpbid 233 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
18 lptre2pt.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1918rpred 12419 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
2019adantr 481 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝐸 ∈ ℝ)
2120rehalfcld 11872 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝐸 / 2) ∈ ℝ)
2215, 21resubcld 11056 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) ∈ ℝ)
2322rexrd 10679 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) ∈ ℝ*)
2415, 21readdcld 10658 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 + (𝐸 / 2)) ∈ ℝ)
2524rexrd 10679 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 + (𝐸 / 2)) ∈ ℝ*)
2618rphalfcld 12431 . . . . . . . . . 10 (𝜑 → (𝐸 / 2) ∈ ℝ+)
2726adantr 481 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝐸 / 2) ∈ ℝ+)
2815, 27ltsubrpd 12451 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) < 𝑤)
2915, 27ltaddrpd 12452 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 < (𝑤 + (𝐸 / 2)))
3023, 25, 15, 28, 29eliood 41649 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
31 oveq1 7152 . . . . . . . . . . 11 (𝑎 = (𝑤 − (𝐸 / 2)) → (𝑎(,)𝑏) = ((𝑤 − (𝐸 / 2))(,)𝑏))
3231eleq2d 2895 . . . . . . . . . 10 (𝑎 = (𝑤 − (𝐸 / 2)) → (𝑤 ∈ (𝑎(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏)))
3331ineq1d 4185 . . . . . . . . . . 11 (𝑎 = (𝑤 − (𝐸 / 2)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})))
3433neeq1d 3072 . . . . . . . . . 10 (𝑎 = (𝑤 − (𝐸 / 2)) → (((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
3532, 34imbi12d 346 . . . . . . . . 9 (𝑎 = (𝑤 − (𝐸 / 2)) → ((𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
36 oveq2 7153 . . . . . . . . . . 11 (𝑏 = (𝑤 + (𝐸 / 2)) → ((𝑤 − (𝐸 / 2))(,)𝑏) = ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
3736eleq2d 2895 . . . . . . . . . 10 (𝑏 = (𝑤 + (𝐸 / 2)) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))))
3836ineq1d 4185 . . . . . . . . . . 11 (𝑏 = (𝑤 + (𝐸 / 2)) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
3938neeq1d 3072 . . . . . . . . . 10 (𝑏 = (𝑤 + (𝐸 / 2)) → ((((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
4037, 39imbi12d 346 . . . . . . . . 9 (𝑏 = (𝑤 + (𝐸 / 2)) → ((𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4135, 40rspc2v 3630 . . . . . . . 8 (((𝑤 − (𝐸 / 2)) ∈ ℝ* ∧ (𝑤 + (𝐸 / 2)) ∈ ℝ*) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4223, 25, 41syl2anc 584 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4317, 30, 42mp2d 49 . . . . . 6 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)
44 n0 4307 . . . . . 6 ((((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
4543, 44sylib 219 . . . . 5 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
46 elinel2 4170 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥 ∈ (𝐴 ∖ {𝑤}))
4746eldifad 3945 . . . . . . . . 9 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥𝐴)
4847adantl 482 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥𝐴)
49 elinel1 4169 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
5049adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
5146eldifbd 3946 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → ¬ 𝑥 ∈ {𝑤})
5251adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → ¬ 𝑥 ∈ {𝑤})
5350, 52eldifd 3944 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))
5448, 53jca 512 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
5554ex 413 . . . . . 6 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → (𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))))
5655eximdv 1909 . . . . 5 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))))
5745, 56mpd 15 . . . 4 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
58 df-rex 3141 . . . 4 (∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ↔ ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
5957, 58sylibr 235 . . 3 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))
6017adantr 481 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
61 eldifi 4100 . . . . . . . . . . . 12 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
62 elioore 12756 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → 𝑥 ∈ ℝ)
6361, 62syl 17 . . . . . . . . . . 11 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ℝ)
6463adantl 482 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ℝ)
6515adantr 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ℝ)
66 eldifsni 4714 . . . . . . . . . . 11 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥𝑤)
6766adantl 482 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥𝑤)
68 simpr 485 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
69 resubcl 10938 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥𝑤) ∈ ℝ)
7069recnd 10657 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥𝑤) ∈ ℂ)
7170abscld 14784 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (abs‘(𝑥𝑤)) ∈ ℝ)
7268, 71resubcld 11056 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ)
7372rexrd 10679 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
74733adant3 1124 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
7568, 71readdcld 10658 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ)
7675rexrd 10679 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
77763adant3 1124 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
78 simp2 1129 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ℝ)
79703adant3 1124 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑥𝑤) ∈ ℂ)
80 recn 10615 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
81803ad2ant1 1125 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑥 ∈ ℂ)
8278recnd 10657 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ℂ)
83 simp3 1130 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑥𝑤)
8481, 82, 83subne0d 10994 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑥𝑤) ≠ 0)
8579, 84absrpcld 14796 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (abs‘(𝑥𝑤)) ∈ ℝ+)
8678, 85ltsubrpd 12451 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 − (abs‘(𝑥𝑤))) < 𝑤)
8778, 85ltaddrpd 12452 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 < (𝑤 + (abs‘(𝑥𝑤))))
8874, 77, 78, 86, 87eliood 41649 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
8964, 65, 67, 88syl3anc 1363 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
9063recnd 10657 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ℂ)
9190adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ℂ)
9265recnd 10657 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ℂ)
9391, 92subcld 10985 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑥𝑤) ∈ ℂ)
9493abscld 14784 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (abs‘(𝑥𝑤)) ∈ ℝ)
9565, 94resubcld 11056 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ)
9695rexrd 10679 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
9765, 94readdcld 10658 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ)
9897rexrd 10679 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
99 oveq1 7152 . . . . . . . . . . . . 13 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (𝑎(,)𝑏) = ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏))
10099eleq2d 2895 . . . . . . . . . . . 12 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (𝑤 ∈ (𝑎(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏)))
10199ineq1d 4185 . . . . . . . . . . . . 13 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})))
102101neeq1d 3072 . . . . . . . . . . . 12 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
103100, 102imbi12d 346 . . . . . . . . . . 11 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → ((𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
104 oveq2 7153 . . . . . . . . . . . . 13 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) = ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
105104eleq2d 2895 . . . . . . . . . . . 12 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))))
106104ineq1d 4185 . . . . . . . . . . . . 13 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
107106neeq1d 3072 . . . . . . . . . . . 12 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
108105, 107imbi12d 346 . . . . . . . . . . 11 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
109103, 108rspc2v 3630 . . . . . . . . . 10 (((𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ* ∧ (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
11096, 98, 109syl2anc 584 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
11160, 89, 110mp2d 49 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)
112 n0 4307 . . . . . . . 8 ((((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
113111, 112sylib 219 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
114 elinel2 4170 . . . . . . . . . . . 12 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ (𝐴 ∖ {𝑤}))
115114eldifad 3945 . . . . . . . . . . 11 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦𝐴)
116115adantl 482 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦𝐴)
11765adantr 481 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℝ)
11864adantr 481 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℝ)
119 elinel1 4169 . . . . . . . . . . . 12 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
120119adantl 482 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
121 simpl1 1183 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℝ)
122 simpl2 1184 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℝ)
123 simpl3 1185 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
124 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 0 ≤ (𝑥𝑤))
125122, 121subge0d 11218 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (0 ≤ (𝑥𝑤) ↔ 𝑤𝑥))
126124, 125mpbid 233 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑤𝑥)
127121, 122, 126abssubge0d 14779 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = (𝑥𝑤))
128127oveq2d 7161 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (𝑤 − (abs‘(𝑥𝑤))) = (𝑤 − (𝑥𝑤)))
129127oveq2d 7161 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (𝑤 + (abs‘(𝑥𝑤))) = (𝑤 + (𝑥𝑤)))
130128, 129oveq12d 7163 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
131123, 130eleqtrd 2912 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
132 elioore 12756 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))) → 𝑦 ∈ ℝ)
1331323ad2ant3 1127 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 ∈ ℝ)
134 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑤 ∈ ℝ)
13569ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑤) ∈ ℝ)
136134, 135resubcld 11056 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑥𝑤)) ∈ ℝ)
137136rexrd 10679 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑥𝑤)) ∈ ℝ*)
1381373adant3 1124 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 − (𝑥𝑤)) ∈ ℝ*)
139134, 135readdcld 10658 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) ∈ ℝ)
140139rexrd 10679 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) ∈ ℝ*)
1411403adant3 1124 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 + (𝑥𝑤)) ∈ ℝ*)
142 simp3 1130 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
143 iooltub 41662 . . . . . . . . . . . . . . . 16 (((𝑤 − (𝑥𝑤)) ∈ ℝ* ∧ (𝑤 + (𝑥𝑤)) ∈ ℝ*𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < (𝑤 + (𝑥𝑤)))
144138, 141, 142, 143syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < (𝑤 + (𝑥𝑤)))
145134recnd 10657 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑤 ∈ ℂ)
14680adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
147145, 146pncan3d 10988 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) = 𝑥)
1481473adant3 1124 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 + (𝑥𝑤)) = 𝑥)
149144, 148breqtrd 5083 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < 𝑥)
150133, 149gtned 10763 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑥𝑦)
151121, 122, 131, 150syl3anc 1363 . . . . . . . . . . . 12 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑥𝑦)
152 simpl1 1183 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℝ)
153 simpl2 1184 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℝ)
154 simpl3 1185 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
155135adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) ∈ ℝ)
156 0red 10632 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 0 ∈ ℝ)
157 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ¬ 0 ≤ (𝑥𝑤))
158155, 156ltnled 10775 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑥𝑤) < 0 ↔ ¬ 0 ≤ (𝑥𝑤)))
159157, 158mpbird 258 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) < 0)
160155, 156, 159ltled 10776 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) ≤ 0)
161155, 160absnidd 14761 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = -(𝑥𝑤))
162146adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℂ)
163145adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℂ)
164162, 163negsubdi2d 11001 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → -(𝑥𝑤) = (𝑤𝑥))
165161, 164eqtrd 2853 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = (𝑤𝑥))
166165oveq2d 7161 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑤 − (abs‘(𝑥𝑤))) = (𝑤 − (𝑤𝑥)))
167165oveq2d 7161 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑤 + (abs‘(𝑥𝑤))) = (𝑤 + (𝑤𝑥)))
168166, 167oveq12d 7163 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
1691683adantl3 1160 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
170154, 169eleqtrd 2912 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
171 simp2 1129 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 ∈ ℝ)
172171rexrd 10679 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 ∈ ℝ*)
173 resubcl 10938 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤𝑥) ∈ ℝ)
174134, 173readdcld 10658 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑤𝑥)) ∈ ℝ)
175174rexrd 10679 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑤𝑥)) ∈ ℝ*)
1761753adant3 1124 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → (𝑤 + (𝑤𝑥)) ∈ ℝ*)
177 simp3 1130 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
178145, 146nncand 10990 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑤𝑥)) = 𝑥)
179178oveq1d 7160 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))) = (𝑥(,)(𝑤 + (𝑤𝑥))))
1801793adant3 1124 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))) = (𝑥(,)(𝑤 + (𝑤𝑥))))
181177, 180eleqtrd 2912 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑦 ∈ (𝑥(,)(𝑤 + (𝑤𝑥))))
182 ioogtlb 41646 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑤 + (𝑤𝑥)) ∈ ℝ*𝑦 ∈ (𝑥(,)(𝑤 + (𝑤𝑥)))) → 𝑥 < 𝑦)
183172, 176, 181, 182syl3anc 1363 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 < 𝑦)
184171, 183ltned 10764 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥𝑦)
185152, 153, 170, 184syl3anc 1363 . . . . . . . . . . . 12 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥𝑦)
186151, 185pm2.61dan 809 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑥𝑦)
187117, 118, 120, 186syl3anc 1363 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥𝑦)
18863adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℝ)
189 elioore 12756 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → 𝑦 ∈ ℝ)
190119, 189syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ℝ)
191190adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℝ)
192188, 191resubcld 11056 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℝ)
193192recnd 10657 . . . . . . . . . . . . . 14 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℂ)
194193adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℂ)
195194abscld 14784 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ∈ ℝ)
196195adantllr 715 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ∈ ℝ)
19794adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑤)) ∈ ℝ)
19815adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℝ)
199190adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℝ)
200198, 199resubcld 11056 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑤𝑦) ∈ ℝ)
201200recnd 10657 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑤𝑦) ∈ ℂ)
202201abscld 14784 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ∈ ℝ)
203202adantlr 711 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ∈ ℝ)
204197, 203readdcld 10658 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) ∈ ℝ)
20519ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝐸 ∈ ℝ)
206118recnd 10657 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℂ)
207190recnd 10657 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ℂ)
208207adantl 482 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℂ)
20992adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℂ)
210206, 208, 209abs3difd 14808 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))))
21121ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝐸 / 2) ∈ ℝ)
212 simpll 763 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝜑)
21361adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
21462, 146sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑥 ∈ ℂ)
21562, 145sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑤 ∈ ℂ)
216214, 215abssubd 14801 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
2172163adant1 1122 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
218 simp2 1129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑤 ∈ ℝ)
21919rehalfcld 11872 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 / 2) ∈ ℝ)
2202193ad2ant1 1125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (𝐸 / 2) ∈ ℝ)
221 simp3 1130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
222218, 220, 221iooabslt 41650 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑤𝑥)) < (𝐸 / 2))
223217, 222eqbrtrd 5079 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
224212, 65, 213, 223syl3anc 1363 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
225224adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
226212, 65, 2133jca 1120 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))))
227 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑤 ∈ ℝ)
228189adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑦 ∈ ℝ)
229227, 228resubcld 11056 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝑤𝑦) ∈ ℝ)
230229recnd 10657 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝑤𝑦) ∈ ℂ)
231230abscld 14784 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ∈ ℝ)
2322313ad2antl2 1178 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ∈ ℝ)
233220adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝐸 / 2) ∈ ℝ)
234214, 215subcld 10985 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (𝑥𝑤) ∈ ℂ)
235234abscld 14784 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) ∈ ℝ)
2362353adant1 1122 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) ∈ ℝ)
237236adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑥𝑤)) ∈ ℝ)
238 simpl2 1184 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑤 ∈ ℝ)
239 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
240238, 237, 239iooabslt 41650 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) < (abs‘(𝑥𝑤)))
241223adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
242232, 237, 233, 240, 241lttrd 10789 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) < (𝐸 / 2))
243232, 233, 242ltled 10776 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ≤ (𝐸 / 2))
244226, 119, 243syl2an 595 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ≤ (𝐸 / 2))
245197, 203, 211, 211, 225, 244ltleaddd 11249 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) < ((𝐸 / 2) + (𝐸 / 2)))
24619recnd 10657 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℂ)
2472462halvesd 11871 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
248247ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
249245, 248breqtrd 5083 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) < 𝐸)
250196, 204, 205, 210, 249lelttrd 10786 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) < 𝐸)
251116, 187, 250jca32 516 . . . . . . . . 9 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
252251ex 413 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → (𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))))
253252eximdv 1909 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))))
254113, 253mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
255 df-rex 3141 . . . . . 6 (∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
256254, 255sylibr 235 . . . . 5 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
257256ex 413 . . . 4 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → ∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
258257reximdv 3270 . . 3 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
25959, 258mpd 15 . 2 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
2603, 259exlimddv 1927 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  cdif 3930  cin 3932  wss 3933  c0 4288  {csn 4557   cuni 4830   class class class wbr 5057  ran crn 5549  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   + caddc 10528  *cxr 10662   < clt 10663  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  2c2 11680  +crp 12377  (,)cioo 12726  abscabs 14581  topGenctg 16699  Topctop 21429  limPtclp 21670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-top 21430  df-topon 21447  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672
This theorem is referenced by:  fourierdlem42  42311
  Copyright terms: Public domain W3C validator