Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Structured version   Visualization version   GIF version

Theorem hdmapglem7 39225
Description: Lemma for hdmapg 39226. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}) 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, 𝑣 correspond to Baer's w, H, x, y, x', x'', y' , y'', and our ((𝑆𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h 𝐻 = (LHyp‘𝐾)
hdmapglem7.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem7.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem7.v 𝑉 = (Base‘𝑈)
hdmapglem7.p + = (+g𝑈)
hdmapglem7.q · = ( ·𝑠𝑈)
hdmapglem7.r 𝑅 = (Scalar‘𝑈)
hdmapglem7.b 𝐵 = (Base‘𝑅)
hdmapglem7.a = (LSSum‘𝑈)
hdmapglem7.n 𝑁 = (LSpan‘𝑈)
hdmapglem7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem7.x (𝜑𝑋𝑉)
hdmapglem7.t × = (.r𝑅)
hdmapglem7.z 0 = (0g𝑅)
hdmapglem7.c = (+g𝑅)
hdmapglem7.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem7.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem7.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmapglem7 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))

Proof of Theorem hdmapglem7
Dummy variables 𝑘 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapglem7.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapglem7.e . . 3 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapglem7.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hdmapglem7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 hdmapglem7.v . . 3 𝑉 = (Base‘𝑈)
6 hdmapglem7.p . . 3 + = (+g𝑈)
7 hdmapglem7.q . . 3 · = ( ·𝑠𝑈)
8 hdmapglem7.r . . 3 𝑅 = (Scalar‘𝑈)
9 hdmapglem7.b . . 3 𝐵 = (Base‘𝑅)
10 hdmapglem7.a . . 3 = (LSSum‘𝑈)
11 hdmapglem7.n . . 3 𝑁 = (LSpan‘𝑈)
12 hdmapglem7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 hdmapglem7.x . . 3 (𝜑𝑋𝑉)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 39223 . 2 (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))
15 hdmapglem7.y . . 3 (𝜑𝑌𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 39223 . 2 (𝜑 → ∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣))
17 hdmapglem7.c . . . . . . . . . . . 12 = (+g𝑅)
18 hdmapglem7.g . . . . . . . . . . . 12 𝐺 = ((HGMap‘𝐾)‘𝑊)
1912ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
201, 4, 12dvhlmod 38406 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
218lmodring 19635 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
2220, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑅 ∈ Ring)
24 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑘𝐵)
25 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑙𝐵)
261, 4, 8, 9, 18, 19, 25hgmapcl 39185 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺𝑙) ∈ 𝐵)
27 hdmapglem7.t . . . . . . . . . . . . . 14 × = (.r𝑅)
289, 27ringcl 19307 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑘𝐵 ∧ (𝐺𝑙) ∈ 𝐵) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
2923, 24, 26, 28syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
30 hdmapglem7.s . . . . . . . . . . . . 13 𝑆 = ((HDMap‘𝐾)‘𝑊)
31 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2798 . . . . . . . . . . . . . . . . . . 19 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
33 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (0g𝑈) = (0g𝑈)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 38408 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
3534eldifad 3893 . . . . . . . . . . . . . . . . 17 (𝜑𝐸𝑉)
3635snssd 4702 . . . . . . . . . . . . . . . 16 (𝜑 → {𝐸} ⊆ 𝑉)
371, 4, 5, 3dochssv 38651 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
3812, 36, 37syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
3938ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑂‘{𝐸}) ⊆ 𝑉)
40 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢 ∈ (𝑂‘{𝐸}))
4139, 40sseldd 3916 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢𝑉)
42 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣 ∈ (𝑂‘{𝐸}))
4339, 42sseldd 3916 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣𝑉)
441, 4, 5, 8, 9, 30, 19, 41, 43hdmapipcl 39201 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆𝑣)‘𝑢) ∈ 𝐵)
451, 4, 8, 9, 17, 18, 19, 29, 44hgmapadd 39190 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))))
461, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 39191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)))
471, 4, 8, 9, 18, 19, 25hgmapvv 39222 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝐺𝑙)) = 𝑙)
4847oveq1d 7150 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)) = (𝑙 × (𝐺𝑘)))
4946, 48eqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = (𝑙 × (𝐺𝑘)))
50 eqid 2798 . . . . . . . . . . . . 13 (-g𝑈) = (-g𝑈)
51 hdmapglem7.z . . . . . . . . . . . . 13 0 = (0g𝑅)
521, 2, 3, 4, 5, 6, 50, 7, 8, 9, 27, 51, 30, 18, 19, 40, 42, 24, 24hdmapglem5 39218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆𝑣)‘𝑢)) = ((𝑆𝑢)‘𝑣))
5349, 52oveq12d 7153 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5445, 53eqtrd 2833 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5513ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑋𝑉)
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 42, 40, 25, 24hdmapglem7b 39224 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)) = ((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢)))
5756fveq2d 6649 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 40, 42, 24, 25hdmapglem7b 39224 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5954, 57, 583eqtr4d 2843 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
60593adantl3 1165 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
61603adant3 1129 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
62 simp3 1135 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑌 = ((𝑙 · 𝐸) + 𝑣))
6362fveq2d 6649 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑌) = (𝑆‘((𝑙 · 𝐸) + 𝑣)))
64 simp13 1202 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑋 = ((𝑘 · 𝐸) + 𝑢))
6563, 64fveq12d 6652 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑌)‘𝑋) = ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)))
6665fveq2d 6649 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))))
6764fveq2d 6649 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑋) = (𝑆‘((𝑘 · 𝐸) + 𝑢)))
6867, 62fveq12d 6652 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑋)‘𝑌) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
6961, 66, 683eqtr4d 2843 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
70693exp 1116 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → ((𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) → (𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7170rexlimdvv 3252 . . . 4 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))
72713exp 1116 . . 3 (𝜑 → ((𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) → (𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))))
7372rexlimdvv 3252 . 2 (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7414, 16, 73mp2d 49 1 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881  {csn 4525  cop 4531   I cid 5424  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  -gcsg 18097  LSSumclsm 18751  Ringcrg 19290  LModclmod 19627  LSpanclspn 19736  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  DVecHcdvh 38374  ocHcoch 38643  HDMapchdma 39088  HGMapchg 39179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lshyp 36273  df-lcv 36315  df-lfl 36354  df-lkr 36382  df-ldual 36420  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644  df-djh 38691  df-lcdual 38883  df-mapd 38921  df-hvmap 39053  df-hdmap1 39089  df-hdmap 39090  df-hgmap 39180
This theorem is referenced by:  hdmapg  39226
  Copyright terms: Public domain W3C validator