Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Structured version   Visualization version   GIF version

Theorem hdmapglem7 41948
Description: Lemma for hdmapg 41949. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}), 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, and 𝑣 correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ((𝑆𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h 𝐻 = (LHyp‘𝐾)
hdmapglem7.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem7.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem7.v 𝑉 = (Base‘𝑈)
hdmapglem7.p + = (+g𝑈)
hdmapglem7.q · = ( ·𝑠𝑈)
hdmapglem7.r 𝑅 = (Scalar‘𝑈)
hdmapglem7.b 𝐵 = (Base‘𝑅)
hdmapglem7.a = (LSSum‘𝑈)
hdmapglem7.n 𝑁 = (LSpan‘𝑈)
hdmapglem7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem7.x (𝜑𝑋𝑉)
hdmapglem7.t × = (.r𝑅)
hdmapglem7.z 0 = (0g𝑅)
hdmapglem7.c = (+g𝑅)
hdmapglem7.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem7.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem7.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmapglem7 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))

Proof of Theorem hdmapglem7
Dummy variables 𝑘 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapglem7.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapglem7.e . . 3 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapglem7.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hdmapglem7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 hdmapglem7.v . . 3 𝑉 = (Base‘𝑈)
6 hdmapglem7.p . . 3 + = (+g𝑈)
7 hdmapglem7.q . . 3 · = ( ·𝑠𝑈)
8 hdmapglem7.r . . 3 𝑅 = (Scalar‘𝑈)
9 hdmapglem7.b . . 3 𝐵 = (Base‘𝑅)
10 hdmapglem7.a . . 3 = (LSSum‘𝑈)
11 hdmapglem7.n . . 3 𝑁 = (LSpan‘𝑈)
12 hdmapglem7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 hdmapglem7.x . . 3 (𝜑𝑋𝑉)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 41946 . 2 (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))
15 hdmapglem7.y . . 3 (𝜑𝑌𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 41946 . 2 (𝜑 → ∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣))
17 hdmapglem7.c . . . . . . . . . . . 12 = (+g𝑅)
18 hdmapglem7.g . . . . . . . . . . . 12 𝐺 = ((HGMap‘𝐾)‘𝑊)
1912ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
201, 4, 12dvhlmod 41129 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
218lmodring 20825 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
2220, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑅 ∈ Ring)
24 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑘𝐵)
25 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑙𝐵)
261, 4, 8, 9, 18, 19, 25hgmapcl 41908 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺𝑙) ∈ 𝐵)
27 hdmapglem7.t . . . . . . . . . . . . . 14 × = (.r𝑅)
289, 27ringcl 20210 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑘𝐵 ∧ (𝐺𝑙) ∈ 𝐵) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
2923, 24, 26, 28syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
30 hdmapglem7.s . . . . . . . . . . . . 13 𝑆 = ((HDMap‘𝐾)‘𝑊)
31 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2735 . . . . . . . . . . . . . . . . . . 19 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
33 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (0g𝑈) = (0g𝑈)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 41131 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
3534eldifad 3938 . . . . . . . . . . . . . . . . 17 (𝜑𝐸𝑉)
3635snssd 4785 . . . . . . . . . . . . . . . 16 (𝜑 → {𝐸} ⊆ 𝑉)
371, 4, 5, 3dochssv 41374 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
3812, 36, 37syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
3938ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑂‘{𝐸}) ⊆ 𝑉)
40 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢 ∈ (𝑂‘{𝐸}))
4139, 40sseldd 3959 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢𝑉)
42 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣 ∈ (𝑂‘{𝐸}))
4339, 42sseldd 3959 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣𝑉)
441, 4, 5, 8, 9, 30, 19, 41, 43hdmapipcl 41924 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆𝑣)‘𝑢) ∈ 𝐵)
451, 4, 8, 9, 17, 18, 19, 29, 44hgmapadd 41913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))))
461, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 41914 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)))
471, 4, 8, 9, 18, 19, 25hgmapvv 41945 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝐺𝑙)) = 𝑙)
4847oveq1d 7420 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)) = (𝑙 × (𝐺𝑘)))
4946, 48eqtrd 2770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = (𝑙 × (𝐺𝑘)))
50 eqid 2735 . . . . . . . . . . . . 13 (-g𝑈) = (-g𝑈)
51 hdmapglem7.z . . . . . . . . . . . . 13 0 = (0g𝑅)
521, 2, 3, 4, 5, 6, 50, 7, 8, 9, 27, 51, 30, 18, 19, 40, 42, 24, 24hdmapglem5 41941 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆𝑣)‘𝑢)) = ((𝑆𝑢)‘𝑣))
5349, 52oveq12d 7423 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5445, 53eqtrd 2770 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5513ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑋𝑉)
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 42, 40, 25, 24hdmapglem7b 41947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)) = ((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢)))
5756fveq2d 6880 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 40, 42, 24, 25hdmapglem7b 41947 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5954, 57, 583eqtr4d 2780 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
60593adantl3 1169 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
61603adant3 1132 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
62 simp3 1138 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑌 = ((𝑙 · 𝐸) + 𝑣))
6362fveq2d 6880 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑌) = (𝑆‘((𝑙 · 𝐸) + 𝑣)))
64 simp13 1206 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑋 = ((𝑘 · 𝐸) + 𝑢))
6563, 64fveq12d 6883 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑌)‘𝑋) = ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)))
6665fveq2d 6880 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))))
6764fveq2d 6880 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑋) = (𝑆‘((𝑘 · 𝐸) + 𝑢)))
6867, 62fveq12d 6883 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑋)‘𝑌) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
6961, 66, 683eqtr4d 2780 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
70693exp 1119 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → ((𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) → (𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7170rexlimdvv 3197 . . . 4 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))
72713exp 1119 . . 3 (𝜑 → ((𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) → (𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))))
7372rexlimdvv 3197 . 2 (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7414, 16, 73mp2d 49 1 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  wss 3926  {csn 4601  cop 4607   I cid 5547  cres 5656  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  -gcsg 18918  LSSumclsm 19615  Ringcrg 20193  LModclmod 20817  LSpanclspn 20928  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  DVecHcdvh 41097  ocHcoch 41366  HDMapchdma 41811  HGMapchg 41902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-rlreg 20654  df-domn 20655  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158  df-dic 41192  df-dih 41248  df-doch 41367  df-djh 41414  df-lcdual 41606  df-mapd 41644  df-hvmap 41776  df-hdmap1 41812  df-hdmap 41813  df-hgmap 41903
This theorem is referenced by:  hdmapg  41949
  Copyright terms: Public domain W3C validator