Step | Hyp | Ref
| Expression |
1 | | hdmapglem7.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmapglem7.e |
. . 3
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
3 | | hdmapglem7.o |
. . 3
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
4 | | hdmapglem7.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
5 | | hdmapglem7.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
6 | | hdmapglem7.p |
. . 3
⊢ + =
(+g‘𝑈) |
7 | | hdmapglem7.q |
. . 3
⊢ · = (
·𝑠 ‘𝑈) |
8 | | hdmapglem7.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑈) |
9 | | hdmapglem7.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
10 | | hdmapglem7.a |
. . 3
⊢ ⊕ =
(LSSum‘𝑈) |
11 | | hdmapglem7.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
12 | | hdmapglem7.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | | hdmapglem7.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | hdmapglem7a 39941 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
15 | | hdmapglem7.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 15 | hdmapglem7a 39941 |
. 2
⊢ (𝜑 → ∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙 ∈ 𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣)) |
17 | | hdmapglem7.c |
. . . . . . . . . . . 12
⊢ ✚ =
(+g‘𝑅) |
18 | | hdmapglem7.g |
. . . . . . . . . . . 12
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
19 | 12 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | 1, 4, 12 | dvhlmod 39124 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ∈ LMod) |
21 | 8 | lmodring 20131 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Ring) |
23 | 22 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑅 ∈ Ring) |
24 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑘 ∈ 𝐵) |
25 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑙 ∈ 𝐵) |
26 | 1, 4, 8, 9, 18, 19, 25 | hgmapcl 39903 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘𝑙) ∈ 𝐵) |
27 | | hdmapglem7.t |
. . . . . . . . . . . . . 14
⊢ × =
(.r‘𝑅) |
28 | 9, 27 | ringcl 19800 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈ 𝐵 ∧ (𝐺‘𝑙) ∈ 𝐵) → (𝑘 × (𝐺‘𝑙)) ∈ 𝐵) |
29 | 23, 24, 26, 28 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝑘 × (𝐺‘𝑙)) ∈ 𝐵) |
30 | | hdmapglem7.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
31 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝐾) =
(Base‘𝐾) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘𝑈) = (0g‘𝑈) |
34 | 1, 31, 32, 4, 5, 33, 2, 12 | dvheveccl 39126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
35 | 34 | eldifad 3899 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
36 | 35 | snssd 4742 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
37 | 1, 4, 5, 3 | dochssv 39369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
38 | 12, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
39 | 38 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝑂‘{𝐸}) ⊆ 𝑉) |
40 | | simplrl 774 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑢 ∈ (𝑂‘{𝐸})) |
41 | 39, 40 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑢 ∈ 𝑉) |
42 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑣 ∈ (𝑂‘{𝐸})) |
43 | 39, 42 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑣 ∈ 𝑉) |
44 | 1, 4, 5, 8, 9, 30,
19, 41, 43 | hdmapipcl 39919 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → ((𝑆‘𝑣)‘𝑢) ∈ 𝐵) |
45 | 1, 4, 8, 9, 17, 18, 19, 29, 44 | hgmapadd 39908 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑘 × (𝐺‘𝑙)) ✚ ((𝑆‘𝑣)‘𝑢))) = ((𝐺‘(𝑘 × (𝐺‘𝑙))) ✚ (𝐺‘((𝑆‘𝑣)‘𝑢)))) |
46 | 1, 4, 8, 9, 27, 18, 19, 24, 26 | hgmapmul 39909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘(𝑘 × (𝐺‘𝑙))) = ((𝐺‘(𝐺‘𝑙)) × (𝐺‘𝑘))) |
47 | 1, 4, 8, 9, 18, 19, 25 | hgmapvv 39940 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘(𝐺‘𝑙)) = 𝑙) |
48 | 47 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → ((𝐺‘(𝐺‘𝑙)) × (𝐺‘𝑘)) = (𝑙 × (𝐺‘𝑘))) |
49 | 46, 48 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘(𝑘 × (𝐺‘𝑙))) = (𝑙 × (𝐺‘𝑘))) |
50 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(-g‘𝑈) = (-g‘𝑈) |
51 | | hdmapglem7.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑅) |
52 | 1, 2, 3, 4, 5, 6, 50, 7, 8, 9,
27, 51, 30, 18, 19, 40, 42, 24, 24 | hdmapglem5 39936 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑆‘𝑣)‘𝑢)) = ((𝑆‘𝑢)‘𝑣)) |
53 | 49, 52 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → ((𝐺‘(𝑘 × (𝐺‘𝑙))) ✚ (𝐺‘((𝑆‘𝑣)‘𝑢))) = ((𝑙 × (𝐺‘𝑘)) ✚ ((𝑆‘𝑢)‘𝑣))) |
54 | 45, 53 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑘 × (𝐺‘𝑙)) ✚ ((𝑆‘𝑣)‘𝑢))) = ((𝑙 × (𝐺‘𝑘)) ✚ ((𝑆‘𝑢)‘𝑣))) |
55 | 13 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → 𝑋 ∈ 𝑉) |
56 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 19, 55, 27, 51, 17, 30, 18, 42, 40, 25, 24 | hdmapglem7b 39942 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)) = ((𝑘 × (𝐺‘𝑙)) ✚ ((𝑆‘𝑣)‘𝑢))) |
57 | 56 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = (𝐺‘((𝑘 × (𝐺‘𝑙)) ✚ ((𝑆‘𝑣)‘𝑢)))) |
58 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 19, 55, 27, 51, 17, 30, 18, 40, 42, 24, 25 | hdmapglem7b 39942 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)) = ((𝑙 × (𝐺‘𝑘)) ✚ ((𝑆‘𝑢)‘𝑣))) |
59 | 54, 57, 58 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣))) |
60 | 59 | 3adantl3 1167 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣))) |
61 | 60 | 3adant3 1131 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣))) |
62 | | simp3 1137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑌 = ((𝑙 · 𝐸) + 𝑣)) |
63 | 62 | fveq2d 6778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆‘𝑌) = (𝑆‘((𝑙 · 𝐸) + 𝑣))) |
64 | | simp13 1204 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
65 | 63, 64 | fveq12d 6781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆‘𝑌)‘𝑋) = ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) |
66 | 65 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)))) |
67 | 64 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆‘𝑋) = (𝑆‘((𝑘 · 𝐸) + 𝑢))) |
68 | 67, 62 | fveq12d 6781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆‘𝑋)‘𝑌) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣))) |
69 | 61, 66, 68 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) |
70 | 69 | 3exp 1118 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → ((𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙 ∈ 𝐵) → (𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)))) |
71 | 70 | rexlimdvv 3222 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙 ∈ 𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌))) |
72 | 71 | 3exp 1118 |
. . 3
⊢ (𝜑 → ((𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ∈ 𝐵) → (𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙 ∈ 𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌))))) |
73 | 72 | rexlimdvv 3222 |
. 2
⊢ (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙 ∈ 𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)))) |
74 | 14, 16, 73 | mp2d 49 |
1
⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) |