Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Structured version   Visualization version   GIF version

Theorem hdmapglem7 41886
Description: Lemma for hdmapg 41887. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}), 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, and 𝑣 correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ((𝑆𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h 𝐻 = (LHyp‘𝐾)
hdmapglem7.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem7.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem7.v 𝑉 = (Base‘𝑈)
hdmapglem7.p + = (+g𝑈)
hdmapglem7.q · = ( ·𝑠𝑈)
hdmapglem7.r 𝑅 = (Scalar‘𝑈)
hdmapglem7.b 𝐵 = (Base‘𝑅)
hdmapglem7.a = (LSSum‘𝑈)
hdmapglem7.n 𝑁 = (LSpan‘𝑈)
hdmapglem7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem7.x (𝜑𝑋𝑉)
hdmapglem7.t × = (.r𝑅)
hdmapglem7.z 0 = (0g𝑅)
hdmapglem7.c = (+g𝑅)
hdmapglem7.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem7.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem7.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmapglem7 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))

Proof of Theorem hdmapglem7
Dummy variables 𝑘 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapglem7.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapglem7.e . . 3 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
3 hdmapglem7.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hdmapglem7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 hdmapglem7.v . . 3 𝑉 = (Base‘𝑈)
6 hdmapglem7.p . . 3 + = (+g𝑈)
7 hdmapglem7.q . . 3 · = ( ·𝑠𝑈)
8 hdmapglem7.r . . 3 𝑅 = (Scalar‘𝑈)
9 hdmapglem7.b . . 3 𝐵 = (Base‘𝑅)
10 hdmapglem7.a . . 3 = (LSSum‘𝑈)
11 hdmapglem7.n . . 3 𝑁 = (LSpan‘𝑈)
12 hdmapglem7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 hdmapglem7.x . . 3 (𝜑𝑋𝑉)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 41884 . 2 (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))
15 hdmapglem7.y . . 3 (𝜑𝑌𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 41884 . 2 (𝜑 → ∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣))
17 hdmapglem7.c . . . . . . . . . . . 12 = (+g𝑅)
18 hdmapglem7.g . . . . . . . . . . . 12 𝐺 = ((HGMap‘𝐾)‘𝑊)
1912ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
201, 4, 12dvhlmod 41067 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
218lmodring 20888 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
2220, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
2322ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑅 ∈ Ring)
24 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑘𝐵)
25 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑙𝐵)
261, 4, 8, 9, 18, 19, 25hgmapcl 41846 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺𝑙) ∈ 𝐵)
27 hdmapglem7.t . . . . . . . . . . . . . 14 × = (.r𝑅)
289, 27ringcl 20277 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑘𝐵 ∧ (𝐺𝑙) ∈ 𝐵) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
2923, 24, 26, 28syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑘 × (𝐺𝑙)) ∈ 𝐵)
30 hdmapglem7.s . . . . . . . . . . . . 13 𝑆 = ((HDMap‘𝐾)‘𝑊)
31 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2740 . . . . . . . . . . . . . . . . . . 19 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
33 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (0g𝑈) = (0g𝑈)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 41069 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
3534eldifad 3988 . . . . . . . . . . . . . . . . 17 (𝜑𝐸𝑉)
3635snssd 4834 . . . . . . . . . . . . . . . 16 (𝜑 → {𝐸} ⊆ 𝑉)
371, 4, 5, 3dochssv 41312 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
3812, 36, 37syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
3938ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝑂‘{𝐸}) ⊆ 𝑉)
40 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢 ∈ (𝑂‘{𝐸}))
4139, 40sseldd 4009 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑢𝑉)
42 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣 ∈ (𝑂‘{𝐸}))
4339, 42sseldd 4009 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑣𝑉)
441, 4, 5, 8, 9, 30, 19, 41, 43hdmapipcl 41862 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆𝑣)‘𝑢) ∈ 𝐵)
451, 4, 8, 9, 17, 18, 19, 29, 44hgmapadd 41851 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))))
461, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 41852 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)))
471, 4, 8, 9, 18, 19, 25hgmapvv 41883 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝐺𝑙)) = 𝑙)
4847oveq1d 7463 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝐺𝑙)) × (𝐺𝑘)) = (𝑙 × (𝐺𝑘)))
4946, 48eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘(𝑘 × (𝐺𝑙))) = (𝑙 × (𝐺𝑘)))
50 eqid 2740 . . . . . . . . . . . . 13 (-g𝑈) = (-g𝑈)
51 hdmapglem7.z . . . . . . . . . . . . 13 0 = (0g𝑅)
521, 2, 3, 4, 5, 6, 50, 7, 8, 9, 27, 51, 30, 18, 19, 40, 42, 24, 24hdmapglem5 41879 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆𝑣)‘𝑢)) = ((𝑆𝑢)‘𝑣))
5349, 52oveq12d 7466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝐺‘(𝑘 × (𝐺𝑙))) (𝐺‘((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5445, 53eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5513ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → 𝑋𝑉)
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 42, 40, 25, 24hdmapglem7b 41885 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)) = ((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢)))
5756fveq2d 6924 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = (𝐺‘((𝑘 × (𝐺𝑙)) ((𝑆𝑣)‘𝑢))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 40, 42, 24, 25hdmapglem7b 41885 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)) = ((𝑙 × (𝐺𝑘)) ((𝑆𝑢)‘𝑣)))
5954, 57, 583eqtr4d 2790 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
60593adantl3 1168 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
61603adant3 1132 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
62 simp3 1138 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑌 = ((𝑙 · 𝐸) + 𝑣))
6362fveq2d 6924 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑌) = (𝑆‘((𝑙 · 𝐸) + 𝑣)))
64 simp13 1205 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → 𝑋 = ((𝑘 · 𝐸) + 𝑢))
6563, 64fveq12d 6927 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑌)‘𝑋) = ((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢)))
6665fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = (𝐺‘((𝑆‘((𝑙 · 𝐸) + 𝑣))‘((𝑘 · 𝐸) + 𝑢))))
6764fveq2d 6924 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝑆𝑋) = (𝑆‘((𝑘 · 𝐸) + 𝑢)))
6867, 62fveq12d 6927 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → ((𝑆𝑋)‘𝑌) = ((𝑆‘((𝑘 · 𝐸) + 𝑢))‘((𝑙 · 𝐸) + 𝑣)))
6961, 66, 683eqtr4d 2790 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) ∧ (𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) ∧ 𝑌 = ((𝑙 · 𝐸) + 𝑣)) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
70693exp 1119 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → ((𝑣 ∈ (𝑂‘{𝐸}) ∧ 𝑙𝐵) → (𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7170rexlimdvv 3218 . . . 4 ((𝜑 ∧ (𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) ∧ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))
72713exp 1119 . . 3 (𝜑 → ((𝑢 ∈ (𝑂‘{𝐸}) ∧ 𝑘𝐵) → (𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌)))))
7372rexlimdvv 3218 . 2 (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢) → (∃𝑣 ∈ (𝑂‘{𝐸})∃𝑙𝐵 𝑌 = ((𝑙 · 𝐸) + 𝑣) → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))))
7414, 16, 73mp2d 49 1 (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  {csn 4648  cop 4654   I cid 5592  cres 5702  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  -gcsg 18975  LSSumclsm 19676  Ringcrg 20260  LModclmod 20880  LSpanclspn 20992  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  DVecHcdvh 41035  ocHcoch 41304  HDMapchdma 41749  HGMapchg 41840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352  df-lcdual 41544  df-mapd 41582  df-hvmap 41714  df-hdmap1 41750  df-hdmap 41751  df-hgmap 41841
This theorem is referenced by:  hdmapg  41887
  Copyright terms: Public domain W3C validator