MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprmdvds Structured version   Visualization version   GIF version

Theorem oddprmdvds 16604
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Distinct variable group:   𝑛,𝐾,𝑝

Proof of Theorem oddprmdvds
Dummy variables 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16397 . . . 4 2 ∈ ℙ
2 pcndvds2 16569 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
31, 2mpan 687 . . 3 (𝐾 ∈ ℕ → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
4 pcdvds 16565 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
51, 4mpan 687 . . 3 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
6 2nn 12046 . . . . . . . . 9 2 ∈ ℕ
76a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 2 ∈ ℕ)
81a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 2 ∈ ℙ)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
108, 9pccld 16551 . . . . . . . 8 (𝐾 ∈ ℕ → (2 pCnt 𝐾) ∈ ℕ0)
117, 10nnexpcld 13960 . . . . . . 7 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ)
12 nndivdvds 15972 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (2↑(2 pCnt 𝐾)) ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1311, 12mpdan 684 . . . . . 6 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1413adantr 481 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
15 elnn1uz2 12665 . . . . . . 7 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)))
16 nncn 11981 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
17 nncn 11981 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℂ)
18 nnne0 12007 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ≠ 0)
1917, 18jca 512 . . . . . . . . . . . . . 14 ((2↑(2 pCnt 𝐾)) ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2011, 19syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
21 3anass 1094 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) ↔ (𝐾 ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)))
2216, 20, 21sylanbrc 583 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2322adantr 481 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
24 diveq1 11666 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2523, 24syl 17 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2610adantr 481 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈ ℕ0)
27 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾)))
2827eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2928adantl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
30 simpr 485 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾)))
3126, 29, 30rspcedvd 3563 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
3231ex 413 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
33 pm2.24 124 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
3432, 33syl6 35 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3534adantr 481 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3625, 35sylbid 239 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3736com12 32 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
38 exprmfct 16409 . . . . . . . . 9 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
39 breq1 5077 . . . . . . . . . . . . . . . . 17 (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4039biimpcd 248 . . . . . . . . . . . . . . . 16 (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4140adantl 482 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4241necon3bd 2957 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))
4342ex 413 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)))
44 prmnn 16379 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
455, 13mpbid 231 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ)
46 nndivides 15973 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
4744, 45, 46syl2anr 597 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
48 eqcom 2745 . . . . . . . . . . . . . . . . 17 ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞))
4916ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈ ℂ)
50 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5144ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℕ)
5250, 51nnmulcld 12026 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ)
5352nncnd 11989 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ)
5411ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ)
5554, 19syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
56 divmul 11636 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5749, 53, 55, 56syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5848, 57bitrid 282 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
59 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℙ)
6160anim1i 615 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
62 eldifsn 4720 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (ℙ ∖ {2}) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
6361, 62sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖ {2}))
6463adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖ {2}))
65 breq1 5077 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑞 → (𝑝𝐾𝑞𝐾))
6665adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝𝐾𝑞𝐾))
6754, 50nnmulcld 12026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℕ)
6867nnzd 12425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ)
6944nnzd 12425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
7069ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℤ)
7168, 70jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
7271adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
73 dvdsmul2 15988 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
75 2nn0 12250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℕ0
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ∈ ℕ → 2 ∈ ℕ0)
7776, 10nn0expcld 13961 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7877ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7978nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℂ)
80 nncn 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
8244nncnd 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
8382ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℂ)
8479, 81, 833jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
8584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
86 mulass 10959 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8874, 87breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8988adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
90 breq2 5078 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9190adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9289, 91mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞𝐾)
9364, 66, 92rspcedvd 3563 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
9493a1d 25 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
9594exp31 420 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9695com23 86 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9758, 96sylbid 239 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9897rexlimdva 3213 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9947, 98sylbid 239 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
10043, 99syldd 72 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
101100rexlimdva 3213 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
102101com12 32 . . . . . . . . . 10 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
103102impd 411 . . . . . . . . 9 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10438, 103syl 17 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10537, 104jaoi 854 . . . . . . 7 (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10615, 105sylbi 216 . . . . . 6 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
107106com12 32 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10814, 107sylbid 239 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
109108ex 413 . . 3 (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
1103, 5, 109mp2d 49 . 2 (𝐾 ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
111110imp 407 1 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cexp 13782  cdvds 15963  cprime 16376   pCnt cpc 16537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538
This theorem is referenced by:  2pwp1prm  45041
  Copyright terms: Public domain W3C validator