MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprmdvds Structured version   Visualization version   GIF version

Theorem oddprmdvds 16812
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Distinct variable group:   𝑛,𝐾,𝑝

Proof of Theorem oddprmdvds
Dummy variables 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16600 . . . 4 2 ∈ ℙ
2 pcndvds2 16777 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
31, 2mpan 690 . . 3 (𝐾 ∈ ℕ → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
4 pcdvds 16773 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
51, 4mpan 690 . . 3 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
6 2nn 12195 . . . . . . . . 9 2 ∈ ℕ
76a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 2 ∈ ℕ)
81a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 2 ∈ ℙ)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
108, 9pccld 16759 . . . . . . . 8 (𝐾 ∈ ℕ → (2 pCnt 𝐾) ∈ ℕ0)
117, 10nnexpcld 14149 . . . . . . 7 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ)
12 nndivdvds 16169 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (2↑(2 pCnt 𝐾)) ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1311, 12mpdan 687 . . . . . 6 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1413adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
15 elnn1uz2 12820 . . . . . . 7 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)))
16 nncn 12130 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
17 nncn 12130 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℂ)
18 nnne0 12156 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ≠ 0)
1917, 18jca 511 . . . . . . . . . . . . . 14 ((2↑(2 pCnt 𝐾)) ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2011, 19syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
21 3anass 1094 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) ↔ (𝐾 ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)))
2216, 20, 21sylanbrc 583 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2322adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
24 diveq1 11803 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2523, 24syl 17 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2610adantr 480 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈ ℕ0)
27 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾)))
2827eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2928adantl 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
30 simpr 484 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾)))
3126, 29, 30rspcedvd 3579 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
3231ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
33 pm2.24 124 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
3432, 33syl6 35 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3534adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3625, 35sylbid 240 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3736com12 32 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
38 exprmfct 16612 . . . . . . . . 9 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
39 breq1 5094 . . . . . . . . . . . . . . . . 17 (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4039biimpcd 249 . . . . . . . . . . . . . . . 16 (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4140adantl 481 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4241necon3bd 2942 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))
4342ex 412 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)))
44 prmnn 16582 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
455, 13mpbid 232 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ)
46 nndivides 16170 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
4744, 45, 46syl2anr 597 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
48 eqcom 2738 . . . . . . . . . . . . . . . . 17 ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞))
4916ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5144ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℕ)
5250, 51nnmulcld 12175 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ)
5352nncnd 12138 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ)
5411ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ)
5554, 19syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
56 divmul 11776 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5749, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5848, 57bitrid 283 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
6059adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℙ)
6160anim1i 615 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
62 eldifsn 4738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (ℙ ∖ {2}) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
6361, 62sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖ {2}))
6463adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖ {2}))
65 breq1 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑞 → (𝑝𝐾𝑞𝐾))
6665adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝𝐾𝑞𝐾))
6754, 50nnmulcld 12175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℕ)
6867nnzd 12492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ)
6944nnzd 12492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
7069ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℤ)
7168, 70jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
7271adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
73 dvdsmul2 16186 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
75 2nn0 12395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℕ0
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ∈ ℕ → 2 ∈ ℕ0)
7776, 10nn0expcld 14150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7877ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7978nn0cnd 12441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℂ)
80 nncn 12130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
8244nncnd 12138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
8382ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℂ)
8479, 81, 833jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
8584adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
86 mulass 11091 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8874, 87breqtrd 5117 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
90 breq2 5095 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9190adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9289, 91mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞𝐾)
9364, 66, 92rspcedvd 3579 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
9493a1d 25 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
9594exp31 419 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9695com23 86 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9758, 96sylbid 240 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9897rexlimdva 3133 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9947, 98sylbid 240 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
10043, 99syldd 72 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
101100rexlimdva 3133 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
102101com12 32 . . . . . . . . . 10 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
103102impd 410 . . . . . . . . 9 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10438, 103syl 17 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10537, 104jaoi 857 . . . . . . 7 (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10615, 105sylbi 217 . . . . . 6 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
107106com12 32 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10814, 107sylbid 240 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
109108ex 412 . . 3 (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
1103, 5, 109mp2d 49 . 2 (𝐾 ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
111110imp 406 1 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3899  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   · cmul 11008   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729  cexp 13965  cdvds 16160  cprime 16579   pCnt cpc 16745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-fz 13405  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746
This theorem is referenced by:  2pwp1prm  47619
  Copyright terms: Public domain W3C validator