MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprmdvds Structured version   Visualization version   GIF version

Theorem oddprmdvds 16941
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Distinct variable group:   𝑛,𝐾,𝑝

Proof of Theorem oddprmdvds
Dummy variables 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16729 . . . 4 2 ∈ ℙ
2 pcndvds2 16906 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
31, 2mpan 690 . . 3 (𝐾 ∈ ℕ → ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
4 pcdvds 16902 . . . 4 ((2 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
51, 4mpan 690 . . 3 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∥ 𝐾)
6 2nn 12339 . . . . . . . . 9 2 ∈ ℕ
76a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 2 ∈ ℕ)
81a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 2 ∈ ℙ)
9 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
108, 9pccld 16888 . . . . . . . 8 (𝐾 ∈ ℕ → (2 pCnt 𝐾) ∈ ℕ0)
117, 10nnexpcld 14284 . . . . . . 7 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ)
12 nndivdvds 16299 . . . . . . 7 ((𝐾 ∈ ℕ ∧ (2↑(2 pCnt 𝐾)) ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1311, 12mpdan 687 . . . . . 6 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
1413adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 ↔ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ))
15 elnn1uz2 12967 . . . . . . 7 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ ↔ ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)))
16 nncn 12274 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
17 nncn 12274 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℂ)
18 nnne0 12300 . . . . . . . . . . . . . . 15 ((2↑(2 pCnt 𝐾)) ∈ ℕ → (2↑(2 pCnt 𝐾)) ≠ 0)
1917, 18jca 511 . . . . . . . . . . . . . 14 ((2↑(2 pCnt 𝐾)) ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2011, 19syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
21 3anass 1095 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) ↔ (𝐾 ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)))
2216, 20, 21sylanbrc 583 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
2322adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
24 diveq1 11952 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2523, 24syl 17 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2610adantr 480 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → (2 pCnt 𝐾) ∈ ℕ0)
27 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑛 = (2 pCnt 𝐾) → (2↑𝑛) = (2↑(2 pCnt 𝐾)))
2827eqeq2d 2748 . . . . . . . . . . . . . . 15 (𝑛 = (2 pCnt 𝐾) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
2928adantl 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) ∧ 𝑛 = (2 pCnt 𝐾)) → (𝐾 = (2↑𝑛) ↔ 𝐾 = (2↑(2 pCnt 𝐾))))
30 simpr 484 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → 𝐾 = (2↑(2 pCnt 𝐾)))
3126, 29, 30rspcedvd 3624 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐾 = (2↑(2 pCnt 𝐾))) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
3231ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
33 pm2.24 124 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
3432, 33syl6 35 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3534adantr 480 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝐾 = (2↑(2 pCnt 𝐾)) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3625, 35sylbid 240 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
3736com12 32 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) = 1 → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
38 exprmfct 16741 . . . . . . . . 9 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))))
39 breq1 5146 . . . . . . . . . . . . . . . . 17 (𝑞 = 2 → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4039biimpcd 249 . . . . . . . . . . . . . . . 16 (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4140adantl 481 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (𝑞 = 2 → 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))))
4241necon3bd 2954 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2))
4342ex 412 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → 𝑞 ≠ 2)))
44 prmnn 16711 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
455, 13mpbid 232 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ)
46 nndivides 16300 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℕ ∧ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
4744, 45, 46syl2anr 597 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾)))))
48 eqcom 2744 . . . . . . . . . . . . . . . . 17 ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ (𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞))
4916ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝐾 ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5144ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℕ)
5250, 51nnmulcld 12319 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℕ)
5352nncnd 12282 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑞) ∈ ℂ)
5411ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ)
5554, 19syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0))
56 divmul 11925 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝑚 · 𝑞) ∈ ℂ ∧ ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ (2↑(2 pCnt 𝐾)) ≠ 0)) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5749, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝐾 / (2↑(2 pCnt 𝐾))) = (𝑚 · 𝑞) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
5848, 57bitrid 283 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) ↔ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
6059adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℙ)
6160anim1i 615 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
62 eldifsn 4786 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (ℙ ∖ {2}) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ≠ 2))
6361, 62sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∈ (ℙ ∖ {2}))
6463adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∈ (ℙ ∖ {2}))
65 breq1 5146 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑞 → (𝑝𝐾𝑞𝐾))
6665adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) ∧ 𝑝 = 𝑞) → (𝑝𝐾𝑞𝐾))
6754, 50nnmulcld 12319 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℕ)
6867nnzd 12640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ)
6944nnzd 12640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
7069ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℤ)
7168, 70jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
7271adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ))
73 dvdsmul2 16316 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((2↑(2 pCnt 𝐾)) · 𝑚) ∈ ℤ ∧ 𝑞 ∈ ℤ) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞))
75 2nn0 12543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℕ0
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ∈ ℕ → 2 ∈ ℕ0)
7776, 10nn0expcld 14285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7877ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℕ0)
7978nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (2↑(2 pCnt 𝐾)) ∈ ℂ)
80 nncn 12274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
8244nncnd 12282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
8382ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → 𝑞 ∈ ℂ)
8479, 81, 833jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
8584adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → ((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ))
86 mulass 11243 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2↑(2 pCnt 𝐾)) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → (((2↑(2 pCnt 𝐾)) · 𝑚) · 𝑞) = ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8874, 87breqtrd 5169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)))
90 breq2 5147 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9190adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (𝑞 ∥ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) ↔ 𝑞𝐾))
9289, 91mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → 𝑞𝐾)
9364, 66, 92rspcedvd 3624 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
9493a1d 25 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) ∧ 𝑞 ≠ 2) ∧ ((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
9594exp31 419 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (𝑞 ≠ 2 → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9695com23 86 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → (((2↑(2 pCnt 𝐾)) · (𝑚 · 𝑞)) = 𝐾 → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9758, 96sylbid 240 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9897rexlimdva 3155 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (∃𝑚 ∈ ℕ (𝑚 · 𝑞) = (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
9947, 98sylbid 240 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝑞 ≠ 2 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
10043, 99syldd 72 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
101100rexlimdva 3155 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
102101com12 32 . . . . . . . . . 10 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
103102impd 410 . . . . . . . . 9 (∃𝑞 ∈ ℙ 𝑞 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10438, 103syl 17 . . . . . . . 8 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10537, 104jaoi 858 . . . . . . 7 (((𝐾 / (2↑(2 pCnt 𝐾))) = 1 ∨ (𝐾 / (2↑(2 pCnt 𝐾))) ∈ (ℤ‘2)) → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10615, 105sylbi 217 . . . . . 6 ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
107106com12 32 . . . . 5 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((𝐾 / (2↑(2 pCnt 𝐾))) ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
10814, 107sylbid 240 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾)))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)))
109108ex 412 . . 3 (𝐾 ∈ ℕ → (¬ 2 ∥ (𝐾 / (2↑(2 pCnt 𝐾))) → ((2↑(2 pCnt 𝐾)) ∥ 𝐾 → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))))
1103, 5, 109mp2d 49 . 2 (𝐾 ∈ ℕ → (¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾))
111110imp 406 1 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cexp 14102  cdvds 16290  cprime 16708   pCnt cpc 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875
This theorem is referenced by:  2pwp1prm  47576
  Copyright terms: Public domain W3C validator