Step | Hyp | Ref
| Expression |
1 | | iccpartgtprec.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | iccpartgtprec.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
3 | | lbfzo0 13355 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑀) ↔ 𝑀 ∈
ℕ) |
4 | 1, 3 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
5 | | iccpartimp 44757 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘0) <
(𝑃‘(0 +
1)))) |
6 | 1, 2, 4, 5 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘0) <
(𝑃‘(0 +
1)))) |
7 | 6 | simprd 495 |
. . . . 5
⊢ (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1))) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1))) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑀 = 1 → (𝑃‘𝑀) = (𝑃‘1)) |
10 | | 1e0p1 12408 |
. . . . . . 7
⊢ 1 = (0 +
1) |
11 | 10 | fveq2i 6759 |
. . . . . 6
⊢ (𝑃‘1) = (𝑃‘(0 + 1)) |
12 | 9, 11 | eqtrdi 2795 |
. . . . 5
⊢ (𝑀 = 1 → (𝑃‘𝑀) = (𝑃‘(0 + 1))) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘𝑀) = (𝑃‘(0 + 1))) |
14 | 8, 13 | breqtrrd 5098 |
. . 3
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
15 | 14 | ex 412 |
. 2
⊢ (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃‘𝑀))) |
16 | 1, 2 | iccpartiltu 44762 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
17 | 1, 2 | iccpartigtl 44763 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
18 | | 1nn 11914 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈
ℕ) |
20 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ) |
21 | | df-ne 2943 |
. . . . . . . . . . 11
⊢ (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1) |
22 | 1 | nnge1d 11951 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑀) |
23 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
24 | 1 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
25 | 23, 24 | ltlend 11050 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀 ∧ 𝑀 ≠ 1))) |
26 | 25 | biimprd 247 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 ≤ 𝑀 ∧ 𝑀 ≠ 1) → 1 < 𝑀)) |
27 | 22, 26 | mpand 691 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀)) |
28 | 21, 27 | syl5bir 242 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀)) |
29 | 28 | imp 406 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀) |
30 | | elfzo1 13365 |
. . . . . . . . 9
⊢ (1 ∈
(1..^𝑀) ↔ (1 ∈
ℕ ∧ 𝑀 ∈
ℕ ∧ 1 < 𝑀)) |
31 | 19, 20, 29, 30 | syl3anbrc 1341 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀)) |
32 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (𝑃‘𝑖) = (𝑃‘1)) |
33 | 32 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑖 = 1 → ((𝑃‘0) < (𝑃‘𝑖) ↔ (𝑃‘0) < (𝑃‘1))) |
34 | 33 | rspcv 3547 |
. . . . . . . 8
⊢ (1 ∈
(1..^𝑀) →
(∀𝑖 ∈
(1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (𝑃‘0) < (𝑃‘1))) |
35 | 31, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (𝑃‘0) < (𝑃‘1))) |
36 | 32 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((𝑃‘𝑖) < (𝑃‘𝑀) ↔ (𝑃‘1) < (𝑃‘𝑀))) |
37 | 36 | rspcv 3547 |
. . . . . . . . . 10
⊢ (1 ∈
(1..^𝑀) →
(∀𝑖 ∈
(1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘1) < (𝑃‘𝑀))) |
38 | 31, 37 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘1) < (𝑃‘𝑀))) |
39 | | nnnn0 12170 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
40 | | 0elfz 13282 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ0
→ 0 ∈ (0...𝑀)) |
41 | 1, 39, 40 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
42 | 1, 2, 41 | iccpartxr 44759 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘0) ∈
ℝ*) |
43 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈
ℝ*) |
44 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀)) |
45 | | 1nn0 12179 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
46 | 45 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈
ℕ0) |
47 | 1, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈
ℕ0) |
49 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀) |
50 | | elfz2nn0 13276 |
. . . . . . . . . . . . 13
⊢ (1 ∈
(0...𝑀) ↔ (1 ∈
ℕ0 ∧ 𝑀
∈ ℕ0 ∧ 1 ≤ 𝑀)) |
51 | 46, 48, 49, 50 | syl3anbrc 1341 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀)) |
52 | 20, 44, 51 | iccpartxr 44759 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈
ℝ*) |
53 | | nn0fz0 13283 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈ (0...𝑀)) |
54 | 39, 53 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
55 | 1, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
56 | 1, 2, 55 | iccpartxr 44759 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘𝑀) ∈
ℝ*) |
57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘𝑀) ∈
ℝ*) |
58 | | xrlttr 12803 |
. . . . . . . . . . 11
⊢ (((𝑃‘0) ∈
ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧
(𝑃‘𝑀) ∈ ℝ*) →
(((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃‘𝑀)) → (𝑃‘0) < (𝑃‘𝑀))) |
59 | 43, 52, 57, 58 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃‘𝑀)) → (𝑃‘0) < (𝑃‘𝑀))) |
60 | 59 | expcomd 416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃‘𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃‘𝑀)))) |
61 | 38, 60 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃‘𝑀)))) |
62 | 61 | com23 86 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀)))) |
63 | 35, 62 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀)))) |
64 | 63 | ex 412 |
. . . . 5
⊢ (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀))))) |
65 | 64 | com24 95 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃‘𝑀))))) |
66 | 16, 17, 65 | mp2d 49 |
. . 3
⊢ (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃‘𝑀))) |
67 | 66 | com12 32 |
. 2
⊢ (¬
𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃‘𝑀))) |
68 | 15, 67 | pm2.61i 182 |
1
⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |