| Step | Hyp | Ref
| Expression |
| 1 | | iccpartgtprec.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | | iccpartgtprec.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| 3 | | lbfzo0 13721 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑀) ↔ 𝑀 ∈
ℕ) |
| 4 | 1, 3 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
| 5 | | iccpartimp 47398 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘0) <
(𝑃‘(0 +
1)))) |
| 6 | 1, 2, 4, 5 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘0) <
(𝑃‘(0 +
1)))) |
| 7 | 6 | simprd 495 |
. . . . 5
⊢ (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1))) |
| 8 | 7 | adantl 481 |
. . . 4
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1))) |
| 9 | | fveq2 6881 |
. . . . . 6
⊢ (𝑀 = 1 → (𝑃‘𝑀) = (𝑃‘1)) |
| 10 | | 1e0p1 12755 |
. . . . . . 7
⊢ 1 = (0 +
1) |
| 11 | 10 | fveq2i 6884 |
. . . . . 6
⊢ (𝑃‘1) = (𝑃‘(0 + 1)) |
| 12 | 9, 11 | eqtrdi 2787 |
. . . . 5
⊢ (𝑀 = 1 → (𝑃‘𝑀) = (𝑃‘(0 + 1))) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘𝑀) = (𝑃‘(0 + 1))) |
| 14 | 8, 13 | breqtrrd 5152 |
. . 3
⊢ ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
| 15 | 14 | ex 412 |
. 2
⊢ (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃‘𝑀))) |
| 16 | 1, 2 | iccpartiltu 47403 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) |
| 17 | 1, 2 | iccpartigtl 47404 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
| 18 | | 1nn 12256 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
| 19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈
ℕ) |
| 20 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ) |
| 21 | | df-ne 2934 |
. . . . . . . . . . 11
⊢ (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1) |
| 22 | 1 | nnge1d 12293 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝑀) |
| 23 | | 1red 11241 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
| 24 | 1 | nnred 12260 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 25 | 23, 24 | ltlend 11385 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀 ∧ 𝑀 ≠ 1))) |
| 26 | 25 | biimprd 248 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 ≤ 𝑀 ∧ 𝑀 ≠ 1) → 1 < 𝑀)) |
| 27 | 22, 26 | mpand 695 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀)) |
| 28 | 21, 27 | biimtrrid 243 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀)) |
| 29 | 28 | imp 406 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀) |
| 30 | | elfzo1 13734 |
. . . . . . . . 9
⊢ (1 ∈
(1..^𝑀) ↔ (1 ∈
ℕ ∧ 𝑀 ∈
ℕ ∧ 1 < 𝑀)) |
| 31 | 19, 20, 29, 30 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀)) |
| 32 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (𝑃‘𝑖) = (𝑃‘1)) |
| 33 | 32 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝑖 = 1 → ((𝑃‘0) < (𝑃‘𝑖) ↔ (𝑃‘0) < (𝑃‘1))) |
| 34 | 33 | rspcv 3602 |
. . . . . . . 8
⊢ (1 ∈
(1..^𝑀) →
(∀𝑖 ∈
(1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (𝑃‘0) < (𝑃‘1))) |
| 35 | 31, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (𝑃‘0) < (𝑃‘1))) |
| 36 | 32 | breq1d 5134 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((𝑃‘𝑖) < (𝑃‘𝑀) ↔ (𝑃‘1) < (𝑃‘𝑀))) |
| 37 | 36 | rspcv 3602 |
. . . . . . . . . 10
⊢ (1 ∈
(1..^𝑀) →
(∀𝑖 ∈
(1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘1) < (𝑃‘𝑀))) |
| 38 | 31, 37 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘1) < (𝑃‘𝑀))) |
| 39 | | nnnn0 12513 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 40 | | 0elfz 13646 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ0
→ 0 ∈ (0...𝑀)) |
| 41 | 1, 39, 40 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 42 | 1, 2, 41 | iccpartxr 47400 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘0) ∈
ℝ*) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈
ℝ*) |
| 44 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀)) |
| 45 | | 1nn0 12522 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈
ℕ0) |
| 47 | 1, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈
ℕ0) |
| 49 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀) |
| 50 | | elfz2nn0 13640 |
. . . . . . . . . . . . 13
⊢ (1 ∈
(0...𝑀) ↔ (1 ∈
ℕ0 ∧ 𝑀
∈ ℕ0 ∧ 1 ≤ 𝑀)) |
| 51 | 46, 48, 49, 50 | syl3anbrc 1344 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀)) |
| 52 | 20, 44, 51 | iccpartxr 47400 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈
ℝ*) |
| 53 | | nn0fz0 13647 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈ (0...𝑀)) |
| 54 | 39, 53 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
| 55 | 1, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 56 | 1, 2, 55 | iccpartxr 47400 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃‘𝑀) ∈
ℝ*) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘𝑀) ∈
ℝ*) |
| 58 | | xrlttr 13161 |
. . . . . . . . . . 11
⊢ (((𝑃‘0) ∈
ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧
(𝑃‘𝑀) ∈ ℝ*) →
(((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃‘𝑀)) → (𝑃‘0) < (𝑃‘𝑀))) |
| 59 | 43, 52, 57, 58 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃‘𝑀)) → (𝑃‘0) < (𝑃‘𝑀))) |
| 60 | 59 | expcomd 416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃‘𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃‘𝑀)))) |
| 61 | 38, 60 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃‘𝑀)))) |
| 62 | 61 | com23 86 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀)))) |
| 63 | 35, 62 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀)))) |
| 64 | 63 | ex 412 |
. . . . 5
⊢ (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (𝑃‘0) < (𝑃‘𝑀))))) |
| 65 | 64 | com24 95 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃‘𝑀))))) |
| 66 | 16, 17, 65 | mp2d 49 |
. . 3
⊢ (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃‘𝑀))) |
| 67 | 66 | com12 32 |
. 2
⊢ (¬
𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃‘𝑀))) |
| 68 | 15, 67 | pm2.61i 182 |
1
⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |