Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   GIF version

Theorem iccpartlt 44764
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 43549 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartlt (𝜑 → (𝑃‘0) < (𝑃𝑀))

Proof of Theorem iccpartlt
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
3 lbfzo0 13355 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
41, 3sylibr 233 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
5 iccpartimp 44757 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
61, 2, 4, 5syl3anc 1369 . . . . . 6 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
76simprd 495 . . . . 5 (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1)))
87adantl 481 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1)))
9 fveq2 6756 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
10 1e0p1 12408 . . . . . . 7 1 = (0 + 1)
1110fveq2i 6759 . . . . . 6 (𝑃‘1) = (𝑃‘(0 + 1))
129, 11eqtrdi 2795 . . . . 5 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘(0 + 1)))
1312adantr 480 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃𝑀) = (𝑃‘(0 + 1)))
148, 13breqtrrd 5098 . . 3 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
1514ex 412 . 2 (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
161, 2iccpartiltu 44762 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171, 2iccpartigtl 44763 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
18 1nn 11914 . . . . . . . . . 10 1 ∈ ℕ
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ)
201adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
21 df-ne 2943 . . . . . . . . . . 11 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
221nnge1d 11951 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
23 1red 10907 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
241nnred 11918 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
2523, 24ltlend 11050 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀𝑀 ≠ 1)))
2625biimprd 247 . . . . . . . . . . . 12 (𝜑 → ((1 ≤ 𝑀𝑀 ≠ 1) → 1 < 𝑀))
2722, 26mpand 691 . . . . . . . . . . 11 (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀))
2821, 27syl5bir 242 . . . . . . . . . 10 (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀))
2928imp 406 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀)
30 elfzo1 13365 . . . . . . . . 9 (1 ∈ (1..^𝑀) ↔ (1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀))
3119, 20, 29, 30syl3anbrc 1341 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀))
32 fveq2 6756 . . . . . . . . . 10 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
3332breq2d 5082 . . . . . . . . 9 (𝑖 = 1 → ((𝑃‘0) < (𝑃𝑖) ↔ (𝑃‘0) < (𝑃‘1)))
3433rspcv 3547 . . . . . . . 8 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3531, 34syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3632breq1d 5080 . . . . . . . . . . 11 (𝑖 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃‘1) < (𝑃𝑀)))
3736rspcv 3547 . . . . . . . . . 10 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
3831, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
39 nnnn0 12170 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40 0elfz 13282 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
411, 39, 403syl 18 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
421, 2, 41iccpartxr 44759 . . . . . . . . . . . 12 (𝜑 → (𝑃‘0) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
45 1nn0 12179 . . . . . . . . . . . . . 14 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ0)
471, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
4847adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ0)
4922adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀)
50 elfz2nn0 13276 . . . . . . . . . . . . 13 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
5146, 48, 49, 50syl3anbrc 1341 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀))
5220, 44, 51iccpartxr 44759 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈ ℝ*)
53 nn0fz0 13283 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
5439, 53sylib 217 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
561, 2, 55iccpartxr 44759 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑀) ∈ ℝ*)
5756adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃𝑀) ∈ ℝ*)
58 xrlttr 12803 . . . . . . . . . . 11 (((𝑃‘0) ∈ ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
5943, 52, 57, 58syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
6059expcomd 416 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6138, 60syld 47 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6261com23 86 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6335, 62syld 47 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6463ex 412 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀)))))
6564com24 95 . . . 4 (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))))
6616, 17, 65mp2d 49 . . 3 (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))
6766com12 32 . 2 𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
6815, 67pm2.61i 182 1 (𝜑 → (𝑃‘0) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cn 11903  0cn0 12163  ...cfz 13168  ..^cfzo 13311  RePartciccp 44753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-iccp 44754
This theorem is referenced by:  iccpartltu  44765  iccpartgtl  44766  iccpartgt  44767
  Copyright terms: Public domain W3C validator