Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   GIF version

Theorem iccpartlt 44876
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 43659 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartlt (𝜑 → (𝑃‘0) < (𝑃𝑀))

Proof of Theorem iccpartlt
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
3 lbfzo0 13427 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
41, 3sylibr 233 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
5 iccpartimp 44869 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
61, 2, 4, 5syl3anc 1370 . . . . . 6 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
76simprd 496 . . . . 5 (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1)))
87adantl 482 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1)))
9 fveq2 6774 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
10 1e0p1 12479 . . . . . . 7 1 = (0 + 1)
1110fveq2i 6777 . . . . . 6 (𝑃‘1) = (𝑃‘(0 + 1))
129, 11eqtrdi 2794 . . . . 5 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘(0 + 1)))
1312adantr 481 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃𝑀) = (𝑃‘(0 + 1)))
148, 13breqtrrd 5102 . . 3 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
1514ex 413 . 2 (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
161, 2iccpartiltu 44874 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171, 2iccpartigtl 44875 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
18 1nn 11984 . . . . . . . . . 10 1 ∈ ℕ
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ)
201adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
21 df-ne 2944 . . . . . . . . . . 11 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
221nnge1d 12021 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
23 1red 10976 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
241nnred 11988 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
2523, 24ltlend 11120 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀𝑀 ≠ 1)))
2625biimprd 247 . . . . . . . . . . . 12 (𝜑 → ((1 ≤ 𝑀𝑀 ≠ 1) → 1 < 𝑀))
2722, 26mpand 692 . . . . . . . . . . 11 (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀))
2821, 27syl5bir 242 . . . . . . . . . 10 (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀))
2928imp 407 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀)
30 elfzo1 13437 . . . . . . . . 9 (1 ∈ (1..^𝑀) ↔ (1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀))
3119, 20, 29, 30syl3anbrc 1342 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀))
32 fveq2 6774 . . . . . . . . . 10 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
3332breq2d 5086 . . . . . . . . 9 (𝑖 = 1 → ((𝑃‘0) < (𝑃𝑖) ↔ (𝑃‘0) < (𝑃‘1)))
3433rspcv 3557 . . . . . . . 8 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3531, 34syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3632breq1d 5084 . . . . . . . . . . 11 (𝑖 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃‘1) < (𝑃𝑀)))
3736rspcv 3557 . . . . . . . . . 10 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
3831, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
39 nnnn0 12240 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40 0elfz 13353 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
411, 39, 403syl 18 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
421, 2, 41iccpartxr 44871 . . . . . . . . . . . 12 (𝜑 → (𝑃‘0) ∈ ℝ*)
4342adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
442adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
45 1nn0 12249 . . . . . . . . . . . . . 14 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ0)
471, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
4847adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ0)
4922adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀)
50 elfz2nn0 13347 . . . . . . . . . . . . 13 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
5146, 48, 49, 50syl3anbrc 1342 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀))
5220, 44, 51iccpartxr 44871 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈ ℝ*)
53 nn0fz0 13354 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
5439, 53sylib 217 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
561, 2, 55iccpartxr 44871 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑀) ∈ ℝ*)
5756adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃𝑀) ∈ ℝ*)
58 xrlttr 12874 . . . . . . . . . . 11 (((𝑃‘0) ∈ ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
5943, 52, 57, 58syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
6059expcomd 417 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6138, 60syld 47 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6261com23 86 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6335, 62syld 47 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6463ex 413 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀)))))
6564com24 95 . . . 4 (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))))
6616, 17, 65mp2d 49 . . 3 (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))
6766com12 32 . 2 𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
6815, 67pm2.61i 182 1 (𝜑 → (𝑃‘0) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cn 11973  0cn0 12233  ...cfz 13239  ..^cfzo 13382  RePartciccp 44865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-iccp 44866
This theorem is referenced by:  iccpartltu  44877  iccpartgtl  44878  iccpartgt  44879
  Copyright terms: Public domain W3C validator