Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   GIF version

Theorem iccpartlt 47422
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 46116 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartlt (𝜑 → (𝑃‘0) < (𝑃𝑀))

Proof of Theorem iccpartlt
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
3 lbfzo0 13660 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
41, 3sylibr 234 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
5 iccpartimp 47415 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
61, 2, 4, 5syl3anc 1373 . . . . . 6 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
76simprd 495 . . . . 5 (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1)))
87adantl 481 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1)))
9 fveq2 6858 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
10 1e0p1 12691 . . . . . . 7 1 = (0 + 1)
1110fveq2i 6861 . . . . . 6 (𝑃‘1) = (𝑃‘(0 + 1))
129, 11eqtrdi 2780 . . . . 5 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘(0 + 1)))
1312adantr 480 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃𝑀) = (𝑃‘(0 + 1)))
148, 13breqtrrd 5135 . . 3 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
1514ex 412 . 2 (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
161, 2iccpartiltu 47420 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171, 2iccpartigtl 47421 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
18 1nn 12197 . . . . . . . . . 10 1 ∈ ℕ
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ)
201adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
21 df-ne 2926 . . . . . . . . . . 11 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
221nnge1d 12234 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
23 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
241nnred 12201 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
2523, 24ltlend 11319 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀𝑀 ≠ 1)))
2625biimprd 248 . . . . . . . . . . . 12 (𝜑 → ((1 ≤ 𝑀𝑀 ≠ 1) → 1 < 𝑀))
2722, 26mpand 695 . . . . . . . . . . 11 (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀))
2821, 27biimtrrid 243 . . . . . . . . . 10 (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀))
2928imp 406 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀)
30 elfzo1 13673 . . . . . . . . 9 (1 ∈ (1..^𝑀) ↔ (1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀))
3119, 20, 29, 30syl3anbrc 1344 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀))
32 fveq2 6858 . . . . . . . . . 10 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
3332breq2d 5119 . . . . . . . . 9 (𝑖 = 1 → ((𝑃‘0) < (𝑃𝑖) ↔ (𝑃‘0) < (𝑃‘1)))
3433rspcv 3584 . . . . . . . 8 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3531, 34syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3632breq1d 5117 . . . . . . . . . . 11 (𝑖 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃‘1) < (𝑃𝑀)))
3736rspcv 3584 . . . . . . . . . 10 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
3831, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
39 nnnn0 12449 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40 0elfz 13585 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
411, 39, 403syl 18 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
421, 2, 41iccpartxr 47417 . . . . . . . . . . . 12 (𝜑 → (𝑃‘0) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
442adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
45 1nn0 12458 . . . . . . . . . . . . . 14 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ0)
471, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
4847adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ0)
4922adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀)
50 elfz2nn0 13579 . . . . . . . . . . . . 13 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
5146, 48, 49, 50syl3anbrc 1344 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀))
5220, 44, 51iccpartxr 47417 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈ ℝ*)
53 nn0fz0 13586 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
5439, 53sylib 218 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
561, 2, 55iccpartxr 47417 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑀) ∈ ℝ*)
5756adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃𝑀) ∈ ℝ*)
58 xrlttr 13100 . . . . . . . . . . 11 (((𝑃‘0) ∈ ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
5943, 52, 57, 58syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
6059expcomd 416 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6138, 60syld 47 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6261com23 86 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6335, 62syld 47 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6463ex 412 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀)))))
6564com24 95 . . . 4 (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))))
6616, 17, 65mp2d 49 . . 3 (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))
6766com12 32 . 2 𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
6815, 67pm2.61i 182 1 (𝜑 → (𝑃‘0) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cn 12186  0cn0 12442  ...cfz 13468  ..^cfzo 13615  RePartciccp 47411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-iccp 47412
This theorem is referenced by:  iccpartltu  47423  iccpartgtl  47424  iccpartgt  47425
  Copyright terms: Public domain W3C validator